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CONCEPT OF A CONCEPT OF A BIOLOGICAL BIOLOGICAL 
NEURON CELLNEURON CELL

•Broad network

•Cell body
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31.1. Basic Concepts

•Dendrites and 

•One Axon 

•Synapse



CONCEPT OF A CONCEPT OF A BIOLOGICAL BIOLOGICAL NEURON CELLNEURON CELL

When the total sum of  impulses surpasses a certain 

threshold, the neuron „fires“. 
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The effect of  an impulse reaching  a neuron can be 

excitatory („positive“) or inhibitory („negative“).



Fig.1. Neuron Cell
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An artificial neuron is described as Processing 

Element (PE)
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Perceptron with a single Processing Element (PE) 

These pulses are summed

Fig.2

1.1. Basic Concepts



The sum z = ΣΣΣΣ xi wi is the inner product of the vectors x and wvectors x and w!

Input and weight values Input and weight values 

can be imagined as vectors:can be imagined as vectors:

z > 0z > 0

z < 0z < 0

parallel x

antiparallel x

w

w
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Thus the result of  the transfer function
(i.e. output) depends on the value of  the sum z! 

z < 0z < 0

z = 0   z = 0   if  the directions of  the vectors 
x and w are rectangular!

rectangular x

w



REMARKREMARK: 

The Input summation

triggers 

the activation function
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the activation function

in order to fire or not to fire 

like the neuron in the brain. 

1.1. Basic Concepts



SIMPLIFIED NETWORK PROCEDURE:SIMPLIFIED NETWORK PROCEDURE:

sigmoidal function

hyperbolic tangent function

Values between

Activation/Transfer 

function

+1 exitatory
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Values between
The first 

derivative 

of  the transfer 

function 

has to exist. 

-1 inhibitory

Output-signal
0 and 1

-1 and +1

or



ACTIVATIONACTIVATION-- RESP. TRANSFERFUNCTIONRESP. TRANSFERFUNCTION
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y = [tanh (ΣΣΣΣ xi wsi)]

Fig.3

1.1. Basic Concepts



RESULT:RESULT:

PEs f(ΣΣΣΣ xiwi)

the final (output) value ys
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Is this result close to the target value ts?



DELTA RULE BACK PROPAGATION OF DELTA RULE BACK PROPAGATION OF 

ERRORSERRORS

Back-propagation 

procedure the weight wsadjusts

minimize (y - t )     In order to

starting from the final output layer backwards!
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121.1. Basic Concepts

The difference between ys and ts is smaller if  more layers are used.  

Too many layers lead however to an overfitting!

minimize (ys- ts)     i.e.In order to

(((( )))) (((( ))))2

2

1
ssss tyPEaatE −−−−====the partial error



For this optimization the gradient descent method is 

normally used. 

Thus the partial derivative of Es has to be calculated for 

each weight wk attached to PEi.

(((( ))))[[[[ ]]]] Minimum!twxfE ssiis ⇓⇓⇓⇓−−−−ΣΣΣΣ====
2

2

1

Known from the last layer
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i.e. (((( ))))[[[[ ]]]] (((( )))) sksss

k

s xzftzf
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'−−−−====

∂∂∂∂
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1.1. Basic Concepts
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In the gradient descent method the weight is 

changed as follows:

k

s
k

w

E
w

∂∂∂∂

∂∂∂∂
====

ηηηη

rate)(learningconstantalityproportion====ηηηη
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141.1. Basic Concepts

Step 1: Comparison between the target values ts and the 

output  values ys of the last  layer: 

Minimization of E of the last layer: Thus new weights are 
assigned as input t o the last layer!



Step 2: The transfer-function of the sum of these new weights

wskmultiplied by xik correspond to the „new“ output values
of the PEk of the preceding layer. Now the preceding layer

can be treated in the same way! Thus „new“ weights wsk of

the preceding layer can be calculated.

The procedure of  the Delta Rule Back Propagation The procedure of  the Delta Rule Back Propagation 

of  Errors includes the following steps:of  Errors includes the following steps:
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the preceding layer can be calculated.

Step 3: etc: in analogy to step 2!

Final Step: After having adjusted all the weights one cycle of

the back-propogation procedure has been completed and the

second iteration with the new weights can be started!

1.1. Basic Concepts



In case of an excellent fit, The knowledge of the 

Today excellent software exists using specialized 

methods to minimize the error Es.

Which values are of  interest?

The values wi or the goodness of  fit between ys and ts ?

BOTH!
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In case of an excellent fit, 
the ANN model can be 
established for predicting
the result yk of another set 
of input variables xik.

The knowledge of the 

weight wi attributed to the 
variable xi is of special 

interest analyzing a 
process or formulation!

1.1. Basic Concepts



„black box“

MULTIMULTI--

LAYER LAYER 

PERCEPTRONPERCEPTRON

a number of hidden layers 
of processing elementsInput layer Output layer

ANN 
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... the independent values of  the variables xsm (m ==== 1...p) fixed 

for a certain experiment s, which yield the output ys  (==== result)

in the output layer.

1.1. Basic Concepts

Fig.4

The Input Layer 

describes ...



In each processing element the sum z = ΣΣΣΣ xsmwm is 
calculated to be used in the activation function and the 

weights are determined in order to receive an output ys
close to the target value ts.

This method is generally known 

For each Processing Element PE 

in a layer a partial error E can 

To summarize the ANN computing procedure:To summarize the ANN computing procedure:
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This method is generally known 

as Delta Rule Back-Propagation 

of Errors! The back propagation 

procedure repeatedly adjusts the 

weights of connections in the 

network!

1.1. Basic Concepts

in a layer a partial error Es can 

be defined and minimized by 

an approriate mathematical 

tool such as the gradient 

descent method. This proce-

dure has to be repeated for 

successively preceding layers.



For the determination 

of the individual weights wm a sufficiently large data set 

is needed, i.e. a learning set:

Prof. Dr. Hans Leuenberger, University of Basel
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DATA SET INDICESDATA SET INDICES

1.1. Basic Concepts

Fig. 5



1.2 Comparison with other methods 
used for process optimization

1.2.1 classical experimental design

1.2.2 factorial design (statistical designs)

1.2.3 central composite design (higher order  designs)

1.2.4 simplex design
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1.2.4 simplex design

1.2.5 true physical (mechanistic) models…

1.2.6 empirical models, overfitting

1.2.7 application of percolation theory

1.2.8 the black box model (convolution/deconvolution model)

1.2 Comparison with other methods used for process optimization



1.2.1 CLASSICAL EXPERIMENTAL DESIGN1.2.1 CLASSICAL EXPERIMENTAL DESIGN

• Only one Factor a time is studied. 

• Interactions between factors cannot be detected, thus ... 

• The results depend on the location of the experiment

Prof. Dr. Hans Leuenberger, University of Basel
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• The results depend on the location of the experiment

in the space of the variables.

• Thus the results can advance misleading conclusions  

leading to a time consuming optimization process!

1.2.1 Classical Experimental Design



1.2.2 FACTORIAL DESIGN 1.2.2 FACTORIAL DESIGN (Statistical Designs)(Statistical Designs)

• More than one Factor a time is studied. 

• Interactions between factors can be quantified!

• The results depend less on the location of the experiment 
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• The results depend less on the location of the experiment 

in the space of the variables.

• Thus the results are in general more reliable.

1.2.2  Factorial Design (Statistical Designs)



Example: Comparison between a classical Example: Comparison between a classical 
and a statistical, and a statistical, i.e.i.e. 2222 DesignDesign

% Drug dissolved of  a tablet as a function of  the amount of  

cornstarch (Factor A) and  compressional pressure (Factor B): 

Classical Experiments:Classical Experiments:
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A) Effect of a higher amount of cornstarchEffect of a higher amount of cornstarch, keeping the 

pressure at the lower level: No change in % Drug 

dissolved!

B) Effect of a higher pressureEffect of a higher pressure: % Drug 

dissolved is lower!

1.2.2  Factorial Design (Statistical Designs)



CONCLUSION 1:CONCLUSION 1: Reduction of  the compressional pressure 

to avoid a possible capping tendency keeping the amount 

of  cornstarch at the lower level!

RESULT OF CONCLUSION 1:RESULT OF CONCLUSION 1: The % of  Drug dissolved is 

again lowered! What happened? The classical design of  

experiments lead to a wrong conclusion! 
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experiments lead to a wrong conclusion! 

THE REAL SITUATION: THE REAL SITUATION: % Drug dissolved as a function of  

the factors A (cornstarch) and B (pressure) according to 

the following contour plot:



CONCLUSIONS:CONCLUSIONS: The 

amount of  cornstarch 

and the pressure need to 

be increased for the 

THE REAL SITUATION: THE REAL SITUATION: % Drug dissolved as a function of  

the factors A (cornstarch) and B (pressure) according to 

the following contour plot:
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251.2.2  Factorial Design (Statistical Designs)

Contour Plot Fig. 6

be increased for the 

optimization of  the 

dissolution rate!
82%



THE STATISTICAL 2THE STATISTICAL 222 DESIGN DESIGN 
(based on the same example as before)(based on the same example as before)

FACTOR X1 = A

(cornstarch)

lower level ==== −−−− 1

upper level ==== ++++ 1

FACTOR X2 = B
(pressure)

lower level ==== −−−− 1

upper level ==== ++++ 1

A ==== Effect of  X1
B ==== Effect of  X2
AB ==== Interaction 

Yi ==== Experim. Result

T ==== Total 

T/4  ==== Mean
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RESULTSRESULTS of the 22 = 4 Experiments:

2224
2121 








++++








++++








++++==== xx

AB
x

B
x

AT
y iiiii

i = 1, ... , 4
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271.2.2  Factorial Design (Statistical Designs)

11

11

2

1

−−−−++++====

−−−−++++====

oderx

oderx

i

i



COMMENTSCOMMENTS on the Result of the 22 Design: 
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∂∂∂∂

∂∂∂∂
++++====

====

The Summarizing Equation (SE) is an approximation 

comparable to the Taylor expansion
of  the true (mechanistic) function 

y ==== f  (x1,x2):
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The true function is approximated by the tangents, resp. 

tangential plane (first order derivative), resp. by a tangential 

curved surface (degenerate second order derivative).

1.2.2  Factorial Design (Statistical Designs)

(((( )))) 21

21

2

2

1

1

21
xxxx 



 ∂∂∂∂∂∂∂∂



 ∂∂∂∂



 ∂∂∂∂

iiiii xx
AB

x
B

x
AT

ySE 2121
2224

: ++++++++++++====



1.2.3 CENTRAL COMPOSITE DESIGN1.2.3 CENTRAL COMPOSITE DESIGN

A better approximation can be obtained with a higher 

order experimental design such as a Central Composite 

Design with three levels:

+1+1
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291.2.3  Central Composite Design (Higher Order Designs)

+1

0

-1

+1

0

-1

Factor X1 Factor X2



The Model Equation (ME) of the Central Composite Design 

Experiments:

is again an approximation similar to the following Taylor 

CommentsComments on the Result on the Result 

of  the Central Composite Design:of  the Central Composite Design:

(((( )))) 2

222

2

11121122211021 ,: xaxaxxaxaxaaxxyME ++++++++++++++++++++====
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is again an approximation similar to the following Taylor 
expansion of the (unknown) true function y = f (x1,x2 ):

1.2.3  Central Composite Design (Higher Order Designs)

(((( ))))

(((( )))) 2
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2
2
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This approach corresponds to 

the RSM Technique, 

i.e. RESPONSE SURFACE  METHODOLOGY, 
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i.e. RESPONSE SURFACE  METHODOLOGY, 

often used in place of the ANN- Methodology!

1.2.3  Central Composite Design (Higher Order Designs)



Comments and Comparison to the Application Comments and Comparison to the Application 

of Artificial Neural Networks (ANN):of Artificial Neural Networks (ANN):

However a number of preliminary experiments is necessary

to establish a correct central composite design, which does

The RSM - Technique is a suitable  alternative

to the ANN -methodology.
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not enter directly into the final evaluation contrary to the

ANN-methodology, where in general the results of all

experiments are taken into account.

General comment:General comment: In the majority of the experiments the 

RSM - Technique yields more or less the same result as the 

ANN -Methodology.

1.2.3  Central Composite Design (Higher Order Designs)



1.2.4 SIMPLEX DESIGN1.2.4 SIMPLEX DESIGN

The Simplex Design 

is an extremely efficient method 

in the area of optimization 
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in the area of optimization 

of processes and/or formulations. 

1.2.4  Simplex Design Design (Higher Order Designs)



SIMPLEX DESIGN (Triangle)SIMPLEX DESIGN (Triangle)

CC

(((( ))))nccc xxx ...,, 21

Rank order: Rank order: 

C better A better BC better A better B

Results: Results: 
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341.2.4  Simplex Design Design (Higher Order Designs)

AA

BB

(((( ))))naaa xxx ...,, 21
(((( ))))nbbb xxx ...,, 21



SIMPLEX DESIGN: SIMPLEX DESIGN: 

Start Triangle and new experimental point DStart Triangle and new experimental point D

CC

Good Result

DD Better Result expected PROJECTION    .
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AA
Good Result

Good Result

BB

Least satisfaying Result



Comparison with ANN MethodologyComparison with ANN Methodology

• The results of the experiments performed with a Simplex

Design can be compiled in a list (e.g. EXCEL List) for

further Evaluation with the ANNMethodology.

• Both approaches  can be used simultaneously.
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• Both approaches  can be used simultaneously.

• The use of a Simplex Design cannot be recommended

if the necessary experiments per triangle are very time

consuming (e.g. a stability test). In such a case a factorial

design has to be preferred.

1.2.4  Simplex Design Design (Higher Order Designs)



1.2.5 TRUE PHYSICAL 1.2.5 TRUE PHYSICAL (MECHANISTIC)(MECHANISTIC) MODELS...MODELS...

would have the advantage 

to be valid in a broad range of the variables. 

Thus an extrapolation would be less problematic. 
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Unfortunately mechanistic models are rare in the area of 

pharmaceutical technology. If a true physical model is 

known, it should be preferentially used for an optimization.

1.2.5  True physical (mechanistic) models



1.2.6 EMPIRICAL MODELS, OVERFITTING1.2.6 EMPIRICAL MODELS, OVERFITTING

Experimental results Y(x1,x2) 

can be fitted by a mechanistic or an empirical model. 

If the exact (mechanistic)model is not known, 

a power series is often applied:
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(((( )))) 2

222

2

11121122211021, xaxaxxaxaxaaxxy ++++++++++++++++++++====

1.2.6  Empirical models, overfitting



Comments: Models and number of parametersComments: Models and number of parameters

fit of the 
experimental 

data is obtained

However such an approach is completely wrongHowever such an approach is completely wrong
as the experimental data exhibit a normal scatter 

If  more parameters

are included

in a model. 
a much better
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PlotPlot: Hardness 

H= y(x) as a function of  compressional stress x

as the experimental data exhibit a normal scatter 

due to the statistical error! 

The inclusion of too many parameters lead to an overfitting!



(((( )))) (((( ))))(((( ))))xHxy γγγγ−−−−−−−−==== ∞∞∞∞ exp1

Fig. 7
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3
3

2
210

1

Fig. 8



General Comments on Classical General Comments on Classical 

Modeling/ANN:Modeling/ANN:

the result 

y = f  (x) as an 

effect of  varying 

the factor x

•a linear

•a quadratic 

•a ln-linear

•a ln-ln

MODEL

can be described as
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• Do we have an overfitting of the data?

• Question of experimental error and lack of fit! 

Problem of extrapolation!

• Analogues questions are necessary in case of ANN:

Input data:Input data: x, ln x Output data:Output data: y, ln y

1.2.6  Empirical models, overfitting

MODEL



Percolation theory 

deals among 

other items  

1.2.7 APPLICATION OF PERCOLATION 1.2.7 APPLICATION OF PERCOLATION 
THEORYTHEORY
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other items  

with geometrical 

phase transitions. 

1.2.7  Application of percolation theroy



It is evident that certain properties of  the system

a geometrical phase transitiona geometrical phase transition

which results in a O/W emulsion.

The continuous addition of  

water to an appropriate W/O

emulsion  induces as an example
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It is evident that certain properties of  the system

e.g. electrical conductivity of  the O/W-emulsion

suffer a dramatic change at the critical concentration,

i.e. at the so called percolation threshold pc, 

where the geometrical phase transition occurs.

1.2.7  Application of percolation theroy



Thus close to the percolation threshold pc

the following model equation of  percolation theory 

holds for the conductivity:

Y (p) = S ( p - p )q
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Y (p) = S ( p - pc )
q

1.2.7  Application of percolation theroy

S = Scaling factor

p   = V/V concentration of  water

pc = critical concentration of  water

q   = critical exponent



needs input and output data 

1.2.8 THE BLACK BOX MODEL 1.2.8 THE BLACK BOX MODEL 

(Convolution/Deconvolution Model)(Convolution/Deconvolution Model)
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similar to the Artificial Neural Network. 

The „Black Box“ is however different from an ANN. 

1.2.8  The black box model (Convolution/Deconvolution Model)



A typical example is the determination 

of  the in-vivo dissolution rate 

In principle the answer 

of  a special input 
function

to the answer of  the 

input function of  

interest.is compared
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of  the in-vivo dissolution rate 

of  a orally administered controlled release dosage form. 

1.2.8  The black box model (Convolution/Deconvolution Model)

The black box is represented by the test person



The special input function 

is a drug solution, 

i.e. a Deltafunction 100% of  the drug

has been dissolved 

in an infinite short time. 

which describes the situation that
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A drug solution 

creates as an answercreates as an answer

the plasma drug concentration profile of  the test person. 



After the administration of  a controlled release dosage After the administration of  a controlled release dosage 

formform

an other plasma drug concentration profile results 

This outpunt function 

as an output function. 

can be explained as the result of  a sequential administration 

of  Deltafunctions with different weights. 

Prof. Dr. Hans Leuenberger, University of Basel
San Fransisco April 20, 2000
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the outputfunctionoutputfunction of  

the controlled release 

dosage form.

The superpositionsuperposition of the answers

of the individual Deltafunctions
lead to

of  Deltafunctions with different weights. 



Black Box Model (Diagrammatic Representation)Black Box Model (Diagrammatic Representation)

Output function
=

Transfer function

D
is
so
lu
ti
o
n
 r
a
te

The black box

Input function
=

Deltafunction

Fig. 9 Fig. 10
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Necessary Input-function 

for a controlled release 

dosage form

Plasma concentration 
controlled release dosage 

form

Fig. 11 Fig. 12



Comments and comparison to the ANN Comments and comparison to the ANN --MethodologyMethodology

1) The system, i.e. the „Black Box“ needs one

A comparison is difficult and somehow stressed:A comparison is difficult and somehow stressed:

What is in common?

Prof. Dr. Hans Leuenberger, University of Basel
San Fransisco April 20, 2000

50

1) The system, i.e. the „Black Box“ needs one

„learning step“, which consists in knowing the

result, i.e the output of a Deltafunction as

input.

1.2.8  The black box model (Convolution/Deconvolution Model)



Comments and comparison to the ANN Comments and comparison to the ANN --MethodologyMethodology

2) Together with the output data of interest (i.e. output

function a(t)) it is possible to calculate the unknown

input function, which has some similarities to the

Convolution / DeconvolutionConvolution / Deconvolution
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input function, which has some similarities to the

weights which are calculated with ANN to define

the importance of the input factors.

1.2.8  The black box model (Convolution/Deconvolution Model)

(((( )))) (((( )))) (((( ))))∫∫∫∫ −−−−====

t

δ
dττtaτeta

0

Convolution Integral



2. APPLICATION OF ARTIFICIAL NEURAL 2. APPLICATION OF ARTIFICIAL NEURAL 

NETWORKS  (ANN) IN PHARMACEUTICAL NETWORKS  (ANN) IN PHARMACEUTICAL 

PROCESS OPTIMIZATIONPROCESS OPTIMIZATION

2.1 Design of Networks 1
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The Design of  ANN is considered as an art 

and depends on the goals to be achieved.

2. Applikation of ANN in pharmaceutical process optimation



• In case of a supervised learning step often a generalized

feed forward multilayer perceptron is used GFF-MLP

• In case of an unsupervised or only partially supervised

learning step (used for feature extracting networks) a hybrid

2.1 Design of Networks 2
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learning step (used for feature extracting networks) a hybrid

network composed of a self-organizing feature map

joined to a multilayer perceptron is generally used.

2. 1 Design of Networks



• The supervised learning step needs a set of training data

(input and output).

• In case of the unsupervised or adaptive training the

2.1 Design of Networks 3
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• In case of the unsupervised or adaptive training the

network is provided only with input data but not with

desired output values.

2. 1 Design of Networks



2.1 Design of Networks 4

• Totally unsupervised learning 

is not yet well understood and 

is studied in special labs to create robots 

capable of  learning from a changing environment.
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• In unsupervised learning Processing Elements 

can cooperate or work in 

a competitive manner 

(Kohonen network).

2. 1 Design of Networks



2.1 Design of Networks 5

Partially unsupervised 

learning is often used for

• data association

• data classification

• data conceptualization
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and can be best compared to 

the statistical Principal Component Analysis (PCA).



Too many hidden layers in a MLP lead to an overfitting,Too many hidden layers in a MLP lead to an overfitting,

i.e. to a memorizing effect,

which can be compared to 

2.1 Design of Networks 6
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the well known learning  technique of students, 

who learn by memorizing 

but do not understand the problem.

2. 1 Design of Networks



The Problem of  Overfitting and the number of  PEsThe Problem of  Overfitting and the number of  PEs

In case that the number of  PEs  

exceeds or is equal to (2n +1) 

Kolgomorov‘s RuleKolgomorov‘s Rule
with n =

number of  input variables 

xi (i = 1...n)

ANY FUNCTION  F(xANY FUNCTION  F(x , x, x , ... x, ... x ) CAN BE DESCRIBED.) CAN BE DESCRIBED.
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To avoid an „overfitting“ 

it is recommendable to start with (2n +1) PEs 

and to reduce subsequently the number of  PEs 

to be on the save side.

ANY FUNCTION  F(xANY FUNCTION  F(x11, x, xjj, ... x, ... xnn) CAN BE DESCRIBED.) CAN BE DESCRIBED.

3.  Conclusions and Experience with ANN



The Problem of  Overfitting and the number of  PEsThe Problem of  Overfitting and the number of  PEs

If  the number of  input data (samples)

is equal to the number of  PEs 

the target values 

General RuleGeneral Rule
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the target values 

will be overfitted 

and the „generalization“ power will be inadequate.

3.  Conclusions and Experience with ANN



2.2 An example: Tablet compression
study using two Artificial Neuron
Networks and the RSM-technique

2.2.1 The Generalized Feed Forward 2.2.1 The Generalized Feed Forward 
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2.2.1 The Generalized Feed Forward 2.2.1 The Generalized Feed Forward 

Multilayer Perceptron (GFFMultilayer Perceptron (GFF--MLP):MLP):

2. 2 Generalized Feed Forward Multilayer Perceptron



Fig. 13 GFF-MLP 
simplified

The input layerThe input layer consists of  6 PEs, 

which correspond to 4 compression 

variables (matrix filling speed, 
precompression force, compression force, 

rotation speed)

the formulation and the batch .The output layerThe output layer consists of  three results, i.e. Not used 
for prediction
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A:A: the hardness of  the tablet

2. 2 Generalized Feed Forward Multilayer Perceptron

The transfer function tanh (z) is used. Between the input and the

output layer there is a hidden layer with 11 Processing Elements

(PEs) with direct connections between the in- and output layers.

B:B: % drug diss. after 15min. and 

C:C: t 50% (time, when 50% of  drug dissolved)

for prediction



The input layerThe input layer is identical to the inputlayer of  

the GFF-MLP. The following Kohonen Layer 

(SOFM) consists of  6x6 Processing Elements (PE)

and the hidden layer of  11 PEs of  the subsequent 

„MLP“.

2.2.2 Self organizing feature map 2.2.2 Self organizing feature map (SOFM)(SOFM) -- MLPMLP

Fig. 14 The hybrid network consists of a SOFM 
(Kohonen network) combined with a normal MLP
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„MLP“.

In both networks the input variables consist of  totally 5 factors with 3 levels and 1 

factor (formulation) with 2 levels. The input data are processed in the 6x6 PEs 

Kohonen layer working as a PCA system and reducing the input variables to the 

prinicipal components.

The resulting outputThe resulting output of  the SOFM is then used as a new input 

to the MLP. The factor „Batch“ was used as a further variable.

The output layerThe output layer is identical to the GFF-MLP network. 

2. 2.2  Self organizing feature map



2.2.3 Results2.2.3 Results11 of of 
the 2 networks and of  the  RSM the 2 networks and of  the  RSM -- techniquetechnique

A) Replication of  an arbitary functionA) Replication of  an arbitary function
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Fig.15: Arbitary function

2. 2.3  Results of the 2 networks and to the RSM - technique



2.2.3 Results2.2.3 Results22 of of 
the 2 networks and of  the  RSM the 2 networks and of  the  RSM -- techniquetechnique
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Fig.16: ANN

2. 2.3  Results of the 2 networks and to the RSM - technique



2.2.3 Results2.2.3 Results33 of of 
the 2 networks and of  the  RSM the 2 networks and of  the  RSM -- techniquetechnique
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Fig.17: RSM

2. 2.3  Results of the 2 networks and to the RSM - technique



2.2.3 Results2.2.3 Results44 of of 
the 2 networks and of  the  RSM the 2 networks and of  the  RSM -- techniquetechnique

B) Hardness (Crushing strength) values and dissolution rate dataB) Hardness (Crushing strength) values and dissolution rate data
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Fig.19 ANN (SOFM-MLP)Fig.18: ANN (GFF-MLP)

2. 2.3  Results of the 2 networks and to the RSM - technique



2.2.3 Results2.2.3 Results55 of of 
the 2 networks and of  the  RSM the 2 networks and of  the  RSM -- techniquetechnique
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Fig.21 R2 - Results „Dissolution Rate“Fig.20: RSM - technique

2. 2.3  Results of the 2 networks and to the RSM - technique



2.2.3 Results2.2.3 Results66 of of 
the 2 networks and of  the  RSM the 2 networks and of  the  RSM -- techniquetechnique

Dissolution rate dataDissolution rate data

The factor „batch“ can not be used for prediction purposes! 

BUT...BUT...

•The factor „batch“ can be used in the case of  unknown , 
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•The factor „batch“ can be used in the case of  unknown , 

hidden factors, which have to be analysed in a   

subsequent, separate study!

•No wonders can be expected from ANN or other

evaluation/modeling techniques if the experimental data

are not sufficient to explain the behavior of a system!



• ANN can be very 

helpful in the design 

and in the optimization 

of  pharmaceutical (and 

3. Conclusions and Experience with ANN 3. Conclusions and Experience with ANN 11

• ANN is a valuable 

alternative to 

experimental 
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of  pharmaceutical (and 

other) dosage forms. experimental 

statistical design 

(RSM) and evaluation.

3.  Conclusions and Experience with ANN



•• The advantage of  ANNThe advantage of  ANN consists in the fact that all 

experimental data can be used and that the evaluation is 

less sensitive to missing data than in the case of  RSM.

• Outlayers or erroneous data can disturb ANN and/or 

3. Conclusions and Experience with ANN 3. Conclusions and Experience with ANN 22
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• Outlayers or erroneous data can disturb ANN and/or 

other evaluations.

• If  appropriate RSM and ANN approches should be used 

for a comparative evaluation.

3.  Conclusions and Experience with ANN



• Major pharmaceutical and chemical companies use 

ANN - methodology to optimize the performance of  

formulations and of  processes leading to new patents 

and to the reduction of  the development time.

3. Conclusions and Experience with ANN 3. Conclusions and Experience with ANN 33
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• It is reported by a German Company* that thanks to 

ANN the development time for a special product could 

be reduced by three years!

3.  Conclusions and Experience with ANN

* ANN is used in Germany by BASF, Bayer, 
Henkel, Merck and other companies.



3. Conclusions and Experience with ANN 3. Conclusions and Experience with ANN 44

• In a modern lab all experimental data should be recorded 

in an appropriate way for a subsequent analysis and 

evaluation by ANN!

• It may be useful to analyse existing data of  complex 

systems such as formulations to get a new insight and 

understanding of  the behavior of  such systems.
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understanding of  the behavior of  such systems.

• „Older“ Formulations consist in general of  many 

components and it is often doubtful which of  the partly 

expensive components is really necessary! 

Thus an ANN Thus an ANN -- analysis may lead to new conclusions and analysis may lead to new conclusions and 

to new patents for a line extension of  a product!to new patents for a line extension of  a product!

3.  Conclusions and Experience with ANN
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