Pharmaceutical Process Optimization

With Artificial Neural Networks (ANN)

Hans Leuenberger
Pharmacenter of the University
Klingelbergstrasse 50
CH-4056 Basel, Switzerland
Hans.Leuenberger@unibas.ch

MILLENNIAL WORLD CONGRESS OF PHARMACEUTICAL SCIENCES

1. Optimization with artificial neural networks

 1.1 basic concept of ANN1.2 comparison with other methods used for process optimization
2. Advantages and limitations of ANN
3. Conclusions

CONCEPT OF A BIOLOGICAL NEURON CELL

-Broad network

- Cell body
- Dendrites and
-One Axon
-Synapse

CONCEPT OF A BIOLOGICAL NEURON CELL

When the total sum of impulses surpasses a certain threshold, the neuron „fires".

The effect of an impulse reaching a neuron can be excitatory (,positive") or inhibitory („negative").

Fig.1. Neuron Cell

An artificial neuron is described as Processing

Element (PE)

Input layer

Fig. 2

Perceptron with a single Processing Element (PE)

These pulses are summed

Input and weight values

can be imagined as vectors:

The $\operatorname{sum} \mathrm{z}=\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}$ is the inner product of the vectors x and w !

parall $\xrightarrow{\text { l } x}$	$\xrightarrow{\mathbf{w}}$	$z>0$
$\xrightarrow{\text { antiparallel } \mathrm{x}}$	W	z <0

$$
\begin{aligned}
& \text { rectangular } x \\
& w=0
\end{aligned} \begin{aligned}
& \text { if the directions of the vectors } \\
& x \text { and } w \text { are rectangular! }
\end{aligned}
$$

Thus the result of the transfer function (i.e. output) depends on the value of the sum z !

REMARK:

The Input summation
triggers
the activation function
in order to fire or not to fire
like the neuron in the brain.

SIMPLIFIED NETWORK PROCEDURE:

Activation/Transfer function

sigmoidal function
 hyperbolic tangent function

+1 exitatory
-1 inhibitory

0 and 1
or
-1 and +1

ACTIVATION- RESP. TRANSFERFUNCTION

Fig. 3

$$
\mathrm{y}=\left[\tanh \left(\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{w}_{\mathrm{s}}\right)\right]
$$

RESULT:

$\operatorname{PE}_{\mathrm{s}} \mathrm{f}\left(\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)$

the final (output) value y_{s}

Is this result close to the target value t_{s} ?

DELTA RULE BACK PROPAGATION OF ERRORS

Back-propagation

procedure
adjusts
the weight w_{s}
starting from the final output layer backwards!

In order to minimize

$$
\left(y_{s}-t_{s}\right) \quad \text { i.e. }
$$

the partial error

$$
E_{s}\left(\text { at a PE } E_{s}\right)=\frac{1}{2}\left(y_{s}-t_{s}\right)^{2}
$$

The difference between y_{s} and t_{s} is smaller if more layers are used. Too many layers lead however to an overfitting!

$$
E_{s}=\frac{1}{2}\left[f\left(\Sigma x_{i} w_{s i}\right)-t_{s}\right]^{2} \Downarrow \text { Minimum! }
$$

For this optimization the gradient descent method is normally used.
Thus the partial derivative of E_{s} has to be calculated for each weight w_{k} attached to PE_{i}.

Known from the last layer

$$
\frac{\partial E_{s}}{\partial w_{k}}=\frac{\partial E_{s}}{\partial y_{s}} \cdot \frac{\partial y_{s}}{\partial z_{s}} \cdot \frac{\partial z_{s}}{\partial w_{k}} \quad \text { i.e. } \quad \frac{\partial E_{s}}{\partial w_{k}}=\left[f\left(z_{s}\right)-t_{s}\right] f^{\prime}\left(z_{s}\right) x_{s k}
$$

$f\left(z_{s}\right)=$ Activation function $\quad z_{s}=\Sigma x_{i} w_{s i} \quad y_{s}=f\left(z_{s}\right)$
$f^{\prime}\left(z_{s}\right)=$ First derivative of the activation function

In the gradient descent method the weight is changed as follows:

$$
\boldsymbol{w}_{k}=\frac{\eta \partial \boldsymbol{E}_{s}}{\partial \boldsymbol{w}_{k}}
$$

$$
\eta=\text { proportionality constant (learning rate) }
$$

Step 1: Comparison between the target values t_{s} and the output values y_{s} of the last layer:
Minimization of E of the last layer: Thus new weights are assigned as input t o the last layer!

The procedure of the Delta Rule Back Propagation of Errors includes the following steps:

Step 2: The transfer-function of the sum of these new weights $\mathbf{w}_{\text {sk }}$ multiplied by x_{ik} correspond to the „new" output values of the PE_{k} of the preceding layer. Now the preceding layer can be treated in the same way! Thus „new" weights $w_{\text {sk }}$ of the preceding layer can be calculated.

$$
\text { Step 3: etc: in analogy to step } 2 \text { ! }
$$

Final Step: After having adjusted all the weights one cycle of the back-propogation procedure has been completed and the second iteration with the new weights can be started!

Today excellent software exists using specialized methods to minimize the error E_{s}.

Which values are of interest?

The values w_{i} or the goodness of fit between y_{s} and t_{s} ? BOTH!

In case of an excellent fit, the $A N N$ model can be established for predicting the result y_{k} of another set of input variables \mathbf{x}_{ik}.

The knowledge of the weight w_{i} attributed to the variable x_{i} is of special interest analyzing a process or formulation!
a number of hidden layers of processing elements

Output layer

Input layer
Hidden layer(s)

MULTI-

The Input Layer describes...

LAYER PERCEPTRON

Fig. 4
... the independent values of the variables $\mathrm{x}_{\mathrm{sm}}(\mathrm{m}=1 . . \mathrm{p})$ fixed for a certain experiment s , which yield the output y_{s} (= result) in the output layer.

In each processing element the $\operatorname{sum} z=\Sigma \mathbf{x}_{\mathrm{sm}} \mathbf{w}_{\mathrm{m}}$ is calculated to be used in the activation function and the weights are determined in order to receive an output y_{s} close to the target value t_{s}.

To summarize the ANN computing procedure:

For each Processing Element PE in a layer a partial error E_{s} can be defined and minimized by an approriate mathematical tool such as the gradient descent method. This procedure has to be repeated for successively preceding layers.

This method is generally known as Delta Rule Back-Propagation of Errors! The back propagation procedure repeatedly adjusts the weights of connections in the network!

For the determination

of the individual weights w_{m} a sufficiently large data set is needed, i.e. a learning set:

Fig. 5

DATA SET INDICES

1.2 Comparison with other methods used for process optimization

1.2.1 classical experimental design
1.2.2 factorial design (statistical designs)
1.2.3 central composite design (higher order designs)
1.2.4 simplex design
1.2.5 true physical (mechanistic) models...
1.2.6 empirical models, overfitting
1.2.7 application of percolation theory
1.2.8 the black box model (convolution/deconvolution model)

1.2.1 CLASSICAL EXPERIMENTAL DESIGN

- Only one Factor a time is studied.
- Interactions between factors cannot be detected, thus ...
- The results depend on the location of the experiment in the space of the variables.
- Thus the results can advance misleading conclusions leading to a time consuming optimization process!

1.2.2 FACTORIAL DESIGN (Statistical Designs)

- More than one Factor a time is studied.
- Interactions between factors can be quantified!
- The results depend less on the location of the experiment in the space of the variables.
- Thus the results are in general more reliable.

Example: Comparison between a classical and a statistical, i.e. $\mathbf{2}^{\mathbf{2}}$ Design

$\%$ Drug dissolved of a tablet as a function of the amount of cornstarch (Factor A) and compressional pressure (Factor B):

Classical Experiments:

A) Effect of a higher amount of cornstarch, keeping the pressure at the lower level: No change in \% Drug dissolved!

B) Effect of a higher pressure: \% Drug dissolved is lower!

CONCLUSION 1: Reduction of the compressional pressure to avoid a possible capping tendency keeping the amount of cornstarch at the lower level!

RESULT OF CONCLUSION 1: The \% of Drug dissolved is again lowered! What happened? The classical design of experiments lead to a wrong conclusion!

THE REAL SITUATION: \% Drug dissolved as a function of the factors A (cornstarch) and B (pressure) according to the following contour plot:

THE REAL SITUATION: \% Drug dissolved as a function of the factors A (cornstarch) and B (pressure) according to the following contour plot:

Contour Plot

CONCLUSIONS: The amount of cornstarch and the pressure need to be increased for the optimization of the dissolution rate!

Fig. 6

THE STATISTICAL 2^{2} DESIGN

(based on the same example as before)

FACTOR $X_{1}=A$ (cornstarch) lower level $=-1$ lower level $=-1$ upper level $=+1$ upper level $=+1$
$\mathrm{A}=$ Effect of \mathbf{X}_{1}
$\mathrm{B}=$ Effect of \mathbf{X}_{2}
$\mathrm{AB}=$ Interaction
$\mathbf{Y}_{\mathrm{i}}=$ Experim. Result
$\mathrm{T}=$ Total
$\mathrm{T} / 4=$ Mean

| EXPERIMENTAL PLAN (YATES): | A | \mathbf{B} | AB | Y_{i} | $\%$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1) both factors at the lower level | - | - | + | + | 82 |
| a) Factor A at the upper level | + | - | - | + | 82 |
| b) Factor B at the upper level | - | + | - | + | 78 |
| ab) both factors at the upper level | + | + | + | + | 95 |
| \quad Sum (+) | 2A | 2B | 2 AB | T | |

RESULTS of the $2^{2}=4$ Experiments:

$$
\begin{aligned}
y_{i}=\frac{T}{4}+\left(\frac{A}{2}\right) x_{1 i} & +\left(\frac{B}{2}\right) x_{2 i}+\left(\frac{A B}{2}\right) x_{1 i} x_{2 i} \\
x_{1 i} & =+1 \text { oder }-1 \\
x_{2 i} & =+1 \text { oder }-1
\end{aligned}
$$

COMMENTS on the Result of the 2^{2} Design:

The Summarizing Equation (SE) is an approximation comparable to the Taylor expansion of the true (mechanistic) function

$$
\begin{aligned}
& y\left(x_{1}, x_{2}\right)= \\
& y\left(x_{1}, x_{2}=0\right)+\left(\frac{\partial y}{\partial x_{1}}\right) x_{1}+\left(\frac{\partial y}{\partial x_{2}}\right) x_{2}+2\left(\frac{\partial y^{2}}{\partial x_{1} \partial x_{2}}\right) x_{1} x_{2} \\
& \text { SE }: y_{i}=\frac{T}{4}+\frac{A}{2} x_{1 i}+\frac{B}{2} x_{2 i}+\frac{A B}{2} x_{1 i} x_{2 i}
\end{aligned}
$$

The true function is approximated by the tangents, resp. tangential plane (first order derivative), resp. by a tangential curved surface (degenerate second order derivative).

1.2.3 CENTRAL COMPOSITE DESIGN

A better approximation can be obtained with a higher order experimental design such as a Central Composite Design with three levels:

Comments on the Result of the Central Composite Design:

The Model Equation (ME) of the Central Composite Design
Experiments:

$$
M E: y\left(x_{1}, x_{2}\right)=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{12} x_{1} x_{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}
$$

is again an approximation similar to the following Taylor expansion of the (unknown) true function $y=f\left(x_{1}, x_{2}\right)$:

$$
\begin{aligned}
& y\left(x_{1}, x_{2}\right)= \\
& y\left(x_{1}, x_{2}=0\right)+\left(\frac{\partial y}{\partial x_{1}}\right) x_{1}+\left(\frac{\partial y}{\partial x_{2}}\right) x_{2}+2\left(\frac{\partial y^{2}}{\partial x_{1} \partial x_{2}}\right) x_{1} x_{2}+\frac{1}{2}\left(\frac{\partial y^{2}}{\partial x_{1}{ }^{2}}\right) x_{1}{ }^{2}+\frac{1}{2}\left(\frac{\partial y^{2}}{\partial x_{2}{ }^{2}}\right) x_{2}{ }^{2}
\end{aligned}
$$

This approach corresponds to the RSM Technique,
i.e. RESPONSE SURFACE METHODOLOGY, often used in place of the ANN- Methodology!

Comments and Comparison to the Application of Artificial Neural Networks (ANN):

The RSM - Technique is a suitable alternative to the ANN - methodology.

However a number of preliminary experiments is necessary to establish a correct central composite design, which does not enter directly into the final evaluation contrary to the ANN-methodology, where in general the results of all experiments are taken into account.
General comment: In the majority of the experiments the RSM - Technique yields more or less the same result as the ANN - Methodology.

1.2.4 SIMPLEX DESIGN

The Simplex Design
is an extremely efficient method in the area of optimization
of processes and/or formulations.

SIMPLEX DESIGN (Triangle)

Results:

SIMPLEX DESIGN:

Start Triangle and new experimental point D

PROJECTION

Good Result

Least satisfaying Result B

Comparison with ANN Methodology

- The results of the experiments performed with a Simplex Design can be compiled in a list (e.g. EXCEL List) for further Evaluation with the ANN Methodology.
- Both approaches can be used simultaneously.
- The use of a Simplex Design cannot be recommended if the necessary experiments per triangle are very time consuming (e.g. a stability test). In such a case a factorial design has to be preferred.

1.2.5 TRUE PHYSICAL (MECHANISTIC) MODELS...

would have the advantage

to be valid in a broad range of the variables.
Thus an extrapolation would be less problematic.
Unfortunately mechanistic models are rare in the area of pharmaceutical technology. If a true physical model is known, it should be preferentially used for an optimization.

1.2.6 EMPIRICAL MODELS, OVERFITIING

Experimental results $\mathbf{Y}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
can be fitted by a mechanistic or an empirical model.
If the exact (mechanistic) model is not known, a power series is often applied:

$$
y\left(x_{1}, x_{2}\right)=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{12} x_{1} x_{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}
$$

Comments: Models and number of parameters

If more parameters are included in a model.
a much better
experimental data is obtained

However such an approach is completely wrong as the experimental data exhibit a normal scatter due to the statistical error!
The inclusion of too many parameters lead to an overfitting!

Plot: Hardness

$H=y(x)$ as a function of compressional stress x

B-Hardness as a function of compressional pressure $\sigma_{\mathrm{c}^{*}} \rho_{\mathrm{r}}$ for caffeine

 (semi mechanistic model)

$$
\begin{aligned}
& H\left(\sigma_{c} \cdot \rho_{r}\right)=H_{\infty}\left(1-e^{\left(-\gamma \cdot \sigma_{c} \cdot \rho_{r}\right)}\right) \\
& H_{\infty}=94.86 \mathrm{MPa} \\
& \gamma=10.94 \cdot 10^{-3} M P a^{-1} \\
& \rho_{r}=\text { relative density } \\
& R^{2}=0.910
\end{aligned}
$$

$$
y(x)=H_{\infty}(1-\exp (-\gamma x))
$$

- experimental data
- semi mechanistic

Fig. 7

B-Hardness as a function of compressional pressure $\sigma_{\mathrm{c}^{*}} \rho_{\mathrm{r}}$ for caffeine ("overfitting" effect with power series)

$$
\begin{aligned}
& H\left(\sigma_{c} \cdot \rho_{r}\right)=-1.59+3.01 x-0.187 x^{2} \\
&+0.006 x^{3}-9 \cdot 10^{-5} x^{4} \\
&+7 \cdot 10^{-7} x^{5}-2 \cdot 10^{-9} x^{6} \\
& R^{2}=0.995 \\
& \boldsymbol{y}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{a}_{\mathbf{1}} \boldsymbol{x}^{1}+\boldsymbol{a}_{2} \boldsymbol{x}^{2}+\boldsymbol{a}_{3} \boldsymbol{x}^{3} \bullet \cdot+\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{x}^{n}
\end{aligned}
$$

- experimental data
_ power series, $n=6$
Fig. 8

General Comments on Classical Modeling/ANN:

the result

$$
y=f(x) \text { as an }
$$ effect of varying the factor x

can be described as
-a linear
-a quadratic
-a \ln-linear
-a $\ln -\ln$
MODEL

- Do we have an overfitting of the data?
- Question of experimental error and lack of fit! Problem of extrapolation!
- Analogues questions are necessary in case of ANN: Input data: $x, \ln x$

Output data: $y, \ln y$

1.2.7 APPLICATION OF PERCOLATION

Percolation theory deals among other items with geometrical phase transitions.

The continuous addition of water to an appropriate W/O emulsion induces as an example

It is evident that certain properties of the system e.g. electrical conductivity of the $\mathrm{O} / \mathrm{W}-\mathrm{emulsion}$ suffer a dramatic change at the critical concentration,
i.e. at the so called percolation threshold p_{c},
where the geometrical phase transition occurs.

Thus close to the percolation threshold p_{c} the following model equation of percolation theory holds for the conductivity:

$$
\begin{aligned}
& Y(p)=S\left(p-p_{c}\right)^{q} \\
& S=S c a l i n g \text { factor } \\
& p=V / V \text { concentration of water } \\
& p_{c}=\text { critical concentration of water } \\
& q=\text { critical exponent }
\end{aligned}
$$

1.2.8 THE BLACK BOX MODEL (Convolution/Deconvolution Model)

needs input and output data similar to the Artificial Neural Network.

The „Black Box" is however different from an ANN.

In principle the answer of a special input function
to the answer of the input function of interest.

A typical example is the determination of the in-vivo dissolution rate of a orally administered controlled release dosage form.

The black box
is represented by

The special input function is a drug solution,
i.e. a Deltafunction 100% of the drug
which describes the situation that has been dissolved in an infinite short time.

> A drug solution
> creates as an answer
> the plasma drug concentration profile of the test person.

After the administration of a controlled release dosage

 form an other plasi as an output function. srofile results
This outpunt function

can be explained as the result of a sequential administration of Deltafunctions with different weights.

The superposition of the answers of the individual Deltafunctions lead to
the outputfunction of the controlled release dosage form.

Black Box Model (Diagrammatic Representation)

ref 250 Necessary Input-function for a controlled release dosage form

Fig. 11

Comments and comparison to the ANN -Methodology

A comparison is difficult and somehow stressed: What is in common?

1) The system, i.e. the „Black Box" needs one „learning step", which consists in knowing the result, i.e the output of a Deltafunction as input.

Comments and comparison to the ANN -Methodology

Convolution / Deconvolution

2) Together with the output data of interest (i.e. output function $a(t)$) it is possible to calculate the unknown input function, which has some similarities to the weights which are calculated with ANN to define the importance of the input factors.

Convolution Integral $\quad a(t)=\int_{0}^{t} e(\tau) a_{\delta}(t-\tau) d \tau$

2. APPLICATION OF ARTIFICIAL NEURAL NETWORKS (ANN) IN PHARMACEUTICAL PROCESS OPTIMIZATION

2.1 Design of Networks 1

The Design of ANN is considered as an art and depends on the goals to be achieved.

2.1 Design of Networks 2

- In case of a supervised learning step often a generalized feed forward multilayer perceptron is used GFF-MLP
- In case of an unsupervised or only partially supervised learning step (used for feature extracting networks) a hybrid network composed of a self-organizing feature map joined to a multilayer perceptron is generally used.

2.1 Design of Networks 3

- The supervised learning step needs a set of training data (input and output).
- In case of the unsupervised or adaptive training the network is provided only with input data but not with desired output values.

2.1 Design of Networks 4 哃

- Totally unsupervised learning is not yet well understood and is studied in special labs to create robots capable of learning from a changing environment.
- In unsupervised learning Processing Elements can cooperate or work in a competitive manner (Kohonen network).

2.1 Design of Networks 5

Partially unsupervised learning is often used for

- data association
- data classification
- data conceptualization

and can be best compared to the statistical Principal Component Analysis (PCA).

2.1 Design of Networks 6

Too many hidden layers in a MLP lead to an overfitting,
i.e. to a memorizing effect, which can be compared to the well known learning technique of students, who learn by memorizing
but do not understand the problem.

The Problem of Overfitting and the number of PEs

Kolgomorov's Rule

In case that the number of PEs exceeds or is equal to $(2 n+1)$

ANY FUNCTION $F\left(x_{1}, x_{j}, \ldots x_{n}\right)$ CAN BE DESCRIBED.

To avoid an „overfitting" it is recommendable to start with $(2 n+1)$ PEs and to reduce subsequently the number of PEs to be on the save side.

The Problem of Overfitting and the number of PEs General Rule

If the number of input data (samples) is equal to the number of PEs
the target values
will be overfitted
and the „generalization" power will be inadequate.

2.2 An example: Tablet compression study using two Artificial Neuron Networks and the RSM-technique

2.2.1 The Generalized Feed Forward Multilayer Perceptron (GFF-MLP):

Fig. 13 GFF-MLP
simplified
The input layer consists of 6 PEs, which correspond to 4 compression variables (matrix filling speed, precompression force, compression force, rotation speed)
The output layer consists of the formulation and the batch

- Not used for prediction
A: the hardness of the tablet
B: \% drug diss. after 15 min . and
C: $\mathrm{t}_{50 \%}$ (time, when $\mathbf{5 0 \%}$ of drug dissolved)
The transfer function $\tanh (z)$ is used. Between the input and the output layer there is a hidden layer with 11 Processing Elements (PEs) with direct connections between the in- and output layers.

2.2.2 Self organizing feature map (SOFM) - MLP

Fig. 14 The hybrid network consists of a SOFM
 (Kohonen network) combined with a normal MLP

The input layer is identical to the inputlayer of the GFF-MLP. The following Kohonen Layer (SOFM) consists of 6×6 Processing Elements (PE) and the hidden layer of 11 PEs of the subsequent The oftple fayer is identical to the GFF-MLP network.

In both networks the input variables consist of totally 5 factors with 3 levels and 1 factor (formulation) with 2 levels. The input data are processed in the 6×6 PEs Kohonen layer working as a PCA system and reducing the input variables to the prinicipal components.

The resulting output of the SOFM is then used as a new input to the MLP. The factor „Batch" was used as a further variable.

2.2.3 Results, of the 2 networks and of the RSM - technique

A) Replication of an arbitary function

Fig.15: Arbitary function

2.2.3 Results ${ }_{2}$ of the 2 networks and of the RSM - technique

Fig. 16: ANN

2.2.3 Results ${ }_{3}$ of
 the 2 networks and of the RSM - technique

Fig.17: RSM

2.2.3 Results ${ }_{4}$ of the 2 networks and of the RSM - technique

B) Hardness (Crushing strength) values and dissolution rate data

Fig.18: ANN (GFF-MLP)

Fig. 19 ANN (SOFM-MLP)

2.2.3 Results $_{5}$ of the 2 networks and of the RSM - technique

Fig.20: RSM - technique
Percentage of Drug Dissolved After 15 nin (\%)
R-Square Results for the Tablet Conpression Study

Time to 50% Drug Dissolution (min)
R-Square Results for the Tablet Compression Study

	GFF-MLP	SOFM-MLP	RSM
R^{2} without factor "Batch"	0.3411	0.2942	0.2739
R^{2} with factor "Batch"	0.8709	0.8536	0.8449

Fig. 21 R ${ }^{2}$ - Results „Dissolution Rate"

2.2.3 Results ${ }_{6}$ of the 2 networks and of the RSM - technique

Dissolution rate data

The factor „batch" can not be used for prediction purposes! BUT...
-The factor „batch" can be used in the case of unknown, hidden factors, which have to be analysed in a subsequent, separate study!

- No wonders can be expected from ANN or other evaluation/modeling techniques if the experimental data are not sufficient to explain the behavior of a system!

3. Conclusions and Experience with ANN

- ANN can be very helpful in the design and in the optimization of pharmaceutical (and other) dosage forms.
- ANN is a valuable alternative to experimental statistical design (RSM) and evaluation.

3. Conclusions and Experience with ANN

- The advantage of ANN consists in the fact that all experimental data can be used and that the evaluation is less sensitive to missing data than in the case of RSM.
- Outlayers or erroneous data can disturb ANN and/or other evaluations.
- If appropriate RSM and ANN approches should be used for a comparative evaluation.

3. Conclusions and Experience with ANN $_{3}$

- Major pharmaceutical and chemical companies use ANN - methodology to optimize the performance of formulations and of processes leading to new patents and to the reduction of the development time.
- It is reported by a German Company* that thanks to ANN the development time for a special product could be reduced by three years!
* ANN is used in Germany by BASF, Bayer, Henkel, Merck and other companies.

3. Conclusions and Experience with ANN 4

- In a modern lab all experimental data should be recorded in an appropriate way for a subsequent analysis and evaluation by ANN!
- It may be useful to analyse existing data of complex systems such as formulations to get a new insight and understanding of the behavior of such systems.
- „Older" Formulations consist in general of many components and it is often doubtful which of the partly expensive components is really necessary!
Thus an ANN - analysis may lead to new conclusions and to new patents for a line extension of a product!

4. Acknowledgements

The following persons are acknowledged for their contribution to the application of ANN in Pharmaceutical process optimization

```
Jaques Bourquin, PhD Novartis Pharma Ltd. CH-4002 Basel
```


Peter van Hoogevest, PhD ADD Technologies Ltd. CH-4132 Muttenz

Michael Lanz

Pharmacenter

University of Basel CH-4056 Basel

Christina Erb
Pharmacenter
University of Basel CH-4056 Basel

5. References

- A.S. Hussein et al. Pharm. Res. 8: 1248-1252 (1991)
- E. Murtomemi et al. Lab. Microcomput. 12, 69-76 (1994)
- J. Bourquin et al. Pharm. Dev. And Tech. 2, 95-109 (1997)
- J. Bourquin et al. Pharm. Dev. And Tech. 2, 111-121(1997)
- J. Bourquin et al. Eur. J. Pharm. Sci. 6, 287-300 (1998)
- J. Bourquin et al. Eur. J. Pharm. Sci. 7, 17-28 (1998)

ARTIFICIAL NEURAL

NETWORKS

was presented by
Prof. Dr. Hans Leuenberger
Pharmaceutical Technology
of the University of Basel
Switzerland

It was a great pleasure to have your attention. Thank you.

