

- Table of Content
- RPD TOOL idea & concept
- Right First Time workflow
- Compatibility studies
- Accelerated stability studies (tablet prototypes)
- Right First Time Lab

Rapid Product Development

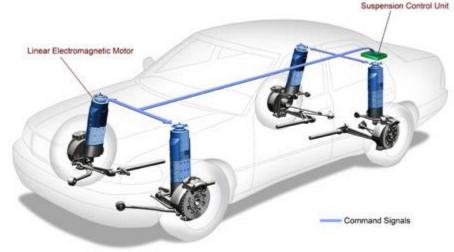
Rapid Product Development (RPD)

Is the continuously accelerated process chain of the entire product development using modern methods and technologies such as CAD, CNC & rapid prototyping. (Wikipedia)

Rapid Product Development

CAD & Computer simulation

VMA-018,2000012671305 HMA-018_20000126713102 HMA-018_200001261131521


591-HM4-018_20000126T132021 591-HMA-018_2000012611325

Rapid Product Development

Rapid Product Development (RPD)

Is the continuously accelerated process chain of the entire product development using modern methods and technologies such as CAD, CNC & rapid prototyping. (Wikipedia)

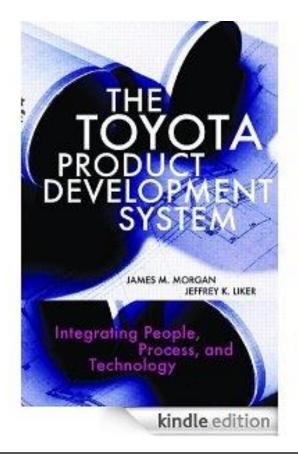
Primary: Automotive industry

Rapid Product Development

Full Computer-Aided-Design

VMA-012,2000012671205 HMA-018_20000126713102 HMA-018_200001261131521

591-HM4-018_20000126T132021 591-HMA-018_20000126T1325


Rapid Product Development

VMA-019_20000126713102 HMA-018_200001261131521

591-HM4-018_200001251132021 591-HMA-018_20000126T1325

Rapid Product Development

- Rapid Product Development (RPD) Is the continuously accelerated process chain of the entire product development using modern methods and technologies such as CAD, CNC & rapid prototyping. (Wikipedia)
- Primary: Automotive industry
- Pioneer: Toyota

Rapid Product Development

Rapid Product Development (RPD)

Is the continuously accelerated process chain of the entire product development using modern methods and technologies such as CAD, CNC & rapid prototyping. (Wikipedia)

- Primary: Automotive industry
- Pioneer: Toyota
- Today: Best industrial practice
- Adapted by other industries

Rapid Product Development

MA-019_20000126713102 HMA-018_20000126713152

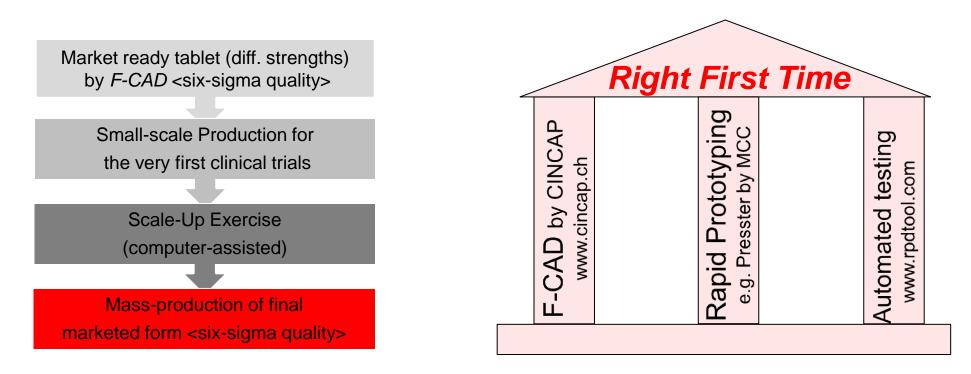
591-HM4-018_20000126113202 HM4-018_20000126T132

Rapid Product Development

HMA-018_20000126T13102 HMA-018_20000126T13152

591-HM4-018_200001261132021 591-HMA-018_20000126T132

- Rapid Product Development (RPD) Is the continuously accelerated process chain
 - of the entire product development using modern methods and technologies such as CAD, CNC & rapid prototyping. (Wikipedia)
- Primary: Automotive industry
- Pioneer: Toyota
- Today: Best industrial practice
- Adapted by other industries



Rapid Product Development

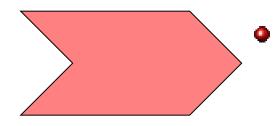
Conventional vs. "Right First Time" workflow

Right First Time workflow

Right First Time-STAGE PLAN (all BCS)

- Technical Development
- Tox./Clinical Studies

- Preformulation
- Early Formulation
 Development
- In vitro/animal
- Pharmocology
- General Tox
- Genotoxity/Other


Formulation
 Development

First in man

- Pharmocology
- General Tox
- Genotoxity/Other

Pre- & Early Formulation Development

- Phys.-chem Characterisation
 - Solubility (aqueous, excipient)
- Chemical & Physical stability (solid & solution)
- Solid state Development
 - Salt/polymorhphism screen
 - Amorphous form (solid dispersion, lyophilisation, micronisation)
- Solubilisation
 - Solubilizer/Precipitation retarder (cyclodextrin, micelle, liposome, mixed micelle, polymeric additives, excipient)
- Tox-Formulation

Formulation Development

- Phys-chem Characterisation
 - Accelerated Compatability / Stability
 - Galenical screening
- Rapid Prototyping
 - F-CAD
 - High speed tablet press simulator
 - Dissolution testing
- Phys-chem Characterisation
 - Dissolution
 - Accelerated chemical & physical stability
 - Packaging selection
- "Market ready" formulation
 - Production for clinical (phase 1)
 - ICH stability program

Meteorology - a scientific success story

Bitte	rungsbeo	Dachts	ingen.
Barich Barometerft. I. 31. Di 470 Dr. Deer m 1. Juni Dobe rebus Ce	neter bugto	Wind.	Bitterung.
7h 28. 718.3 759	16.3 68 11.2 96 15.0 79	NE 0 W 0 W 0	beb.,ichmacher Regen bebedt, Regen. bewölft.

Telegraphischer Bericht des Parifer Obferbatoriums vom 1. Juni. Auf bem Ranal und bem Ogean Barometerstand gegen 761 mm. Schwacher Wind und icones Meer. In der Gascogne fieben Setwitter gu erwarten.

erwatten. Barometerstand: 747 in Hernöland; 750 in Christianjund, Ord, Wisch und Bodd; 755 in Fand, Libeu und Helfingford: 760 in Sheiland, Hamburg, Breslau, Paris, Bordeaur, Nizza, Neapel und Constantine; 764 in Lissan, Aussichten für die Witterung des 2. Juni in der Nordolft-Schweiz: Fortbauer ber unbeständigen

Ausfichten für die Bitterung des 2. Juni in der Rordoft-Edweig: fortbauer ber unbeftändigen ju leichten Regenichauern geneigten Witterung; Mufheiterung fieht erft bei weiterem Steigen des Barometers ju erwarten.

Anmertung. Dielfeitig geäugerten Bunfchen entfprechend, fuhren wir mit heute in den täglichen Mitterungsberichten zwei Neuerungen ein:

1) Die Rebuftion ber auf ber Burcher Sternwarte (470 Meter über Meer) bepbachteten Barometerftande auf bas Meeresniveau, wobei wir jedoch bie rebugirten Stände aus verschiedenen Gründen nur in gangen Millimetern geben.

berfchiebenen Bründen nur in gangen Dillimetern geben. 2) Die Prognofe für bie Witterung bes folgenden Tages auf Grundlage ber hierfeitigen Beobachtungen und bes Berichtes bes Parifer Obferbatoriums.

Erstere foll zur Bergleichung des jeweilen hier beobachteten Barometerstandes mit den Daten der Parifer Depeschen, die für 7 Uhr Bormittags gelten, dienen und ift namentlich für diejenigen Lefer von Werth, welche jene Daten mittelst der Jiobaren fartographilch aufzeichnen.

In Betreff ber Brognofe halten wir eine nähere Erörterung, bie in der Montagenummer folgen foll, nicht für ganz überstüffig. R.B. 1 Juni 1878 1st public weather forecast for the nordwest of Switzerland for the next day:

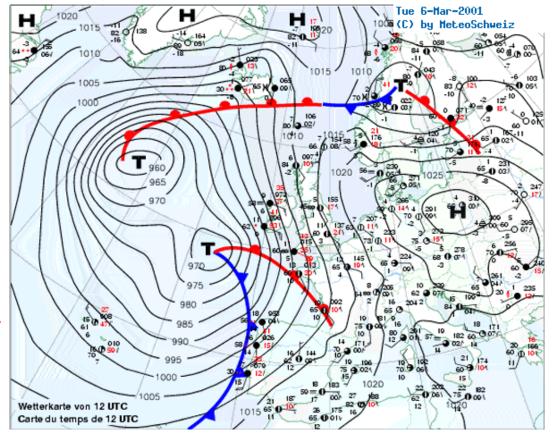
"On-going unstable with trend to light rains. No improvement can be expeced prior climbing of barometer reading."

Basis: 88 weather stations in Switzerland & weather report of French observatory

Workflow

- Data collection
- Data analysis
- Forecast

Source: Meteo Schweiz


2nd decade of 20th Century. Automatisation in data acquisition and analysis

Swiss Meteo office in 1980

Workflow

- Data colleting -> quantity & quality
- Data analysis -> improved models
- Forecast -> long, mid & short-term

Rpptobl Soft HMA 018, 2000125113252 Soft HMA 018, 2000125113252 Repid Product Development

Compatibility study

- Study plan: Taken into account
 - -pharmaceutical needs
 - -physico-chemical properties & quality of api & excip. -properly designed (i.e. factorial)
- Composition and sample production:
 - composition as close to target formulation as possible (including quality of api and excipients)
 - sample production as close to planned manufacturing process as possible (solid state, homogeneity)

Compatibility study: Example

• Composition:

API: 1 compound with target concentration of 1 %
Filler: Two fillers (one with two qualities)
Lubricants: Two lubricants
Disintegrants: Two disintegrants
Binders: Two binders

Compatibility study: Example

No of Experiment	api [%]	F	Fillers [%	6]	Lubrica	ants [%]	Disinteg	rants [%]	Binders [%]		
		Α	В	С	D	E	F	G	Н	I	
1	1	69			5		20		5		
2	1	69			5		20			5	
3	1	69			5			20	5		
4	1	69			5			20		5	
5	1	69				5	20		5		
6	1	69				5	20			5	
7	1	69				5		20	5		
8	1	69				5		20		5	
9	1		69		5		20		5		
10	1		69		5		20			5	
11	1		69		5			20	5		
12	1		69		5			20		5	
13	1		69			5	20		5		
14	1		69			5	20			5	
15	1		69			5		20	5		
16	1		69			5		20		5	
17	1			69	5		20		5		
18	1			69	5		20			5	
19	1			69	5			20	5		
20	1			69	5			20		5	
21	1			69		5	20		5		
22	1			69		5	20			5	
23	1			69		5		20	5		
24	1			69		5		20		5	

Set-up of compatibility study: Example

- Number of storage temperatures: 2 (50 & 60°C)
- Number of humiditiy: 2 (0 & 75%RH)
- Number of time points: 4 (0, 10, 20 & 30 days)

Number of test samples: 24 * 2 * 2 * 4 = 384 Amount of drug required: approx 200 - 400 mg

Set-up of compatibility study: Example

KPDTOOL

Automated solid dispensing of excipients (Placebo)

• Worflow:

- Preparation of set of excipient mixtures (placebo-vials)

HMA-018_2000012671310 HMA-018_20000126T13152

591-HM4-018_20000126113202 591-HMA-018_20000126T132

- Dissolving of api in solvent
- Dispensing of planned amount of api to placebo vials = > test vials.
- Slow removal of solvent under appropriate vortexing of test vials
- Dry test vials = starting samples of chemical and physical compatibility study

Rapid Product Development

Rpdtool

Rapid Product Development

Compatability studies – mg scale production

Production of mg scale amount of test sample by simulation wet granulation.

• Worflow:

- Preparation of set of excipient mixtures (placebo-vials)
- Dissolving of api in solvent
- Dispensing of planned amount of api to placebo vials = > test vials.
- Slow removal of solvent under vortexing
- Dry test vials = starting samples of chem. & phys. compatibility study

SamplePrep – chromatographic sample preparation

Stand alone

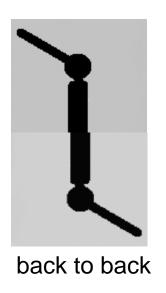
Connected to UPLC

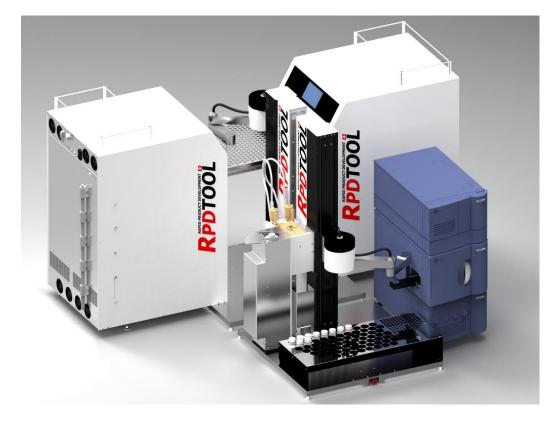
Rapid Product Development

Storage Cabinet

5 independent climate zones

VMA-018_20000126T1310 HMA-018_20000126T13152


591-HM4-018_20000125113202 HM4-018_20000126T132

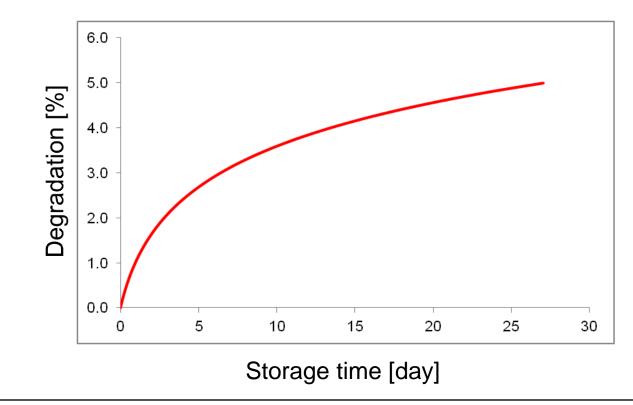

- Dimensions: h/w/d: 833/564/782 mm
- 1 Peltier / 4 heat foil (0 100 °C)
- Humidity control (0 90%RH)
- Max. height of vial/blister: 75 mm
- Storage capacity per drawer:
 - e.g. 315 vials with d = 17 mm
- Accelerated stability studies
- Selection of packaging material

Automated storage stability: Multi robot system

Example: Chemical storage stability (2 SP, 2 MCC & 1 UPLC/MS)

Compatibility study - evaluation

- Focus on key degradation products:
 Example: Imp 1, Imp 2 & Σ Imp
- Evaluation of degradation factors (example)
 Imp 1 = f_a*[A]*t+f_b*[B]*t+f_c*[C]*t+f_d*[D]*t+f_e*[E]*t+f_f*[F]*t+ f_g*[G]*t+f_h*[H]*t+f_i*[I]*t + f_t*t
- Statistic software for model evaluation recommended (i.e. SAS, S-plus,...)


Accelerated stability study (tablet prototypes)

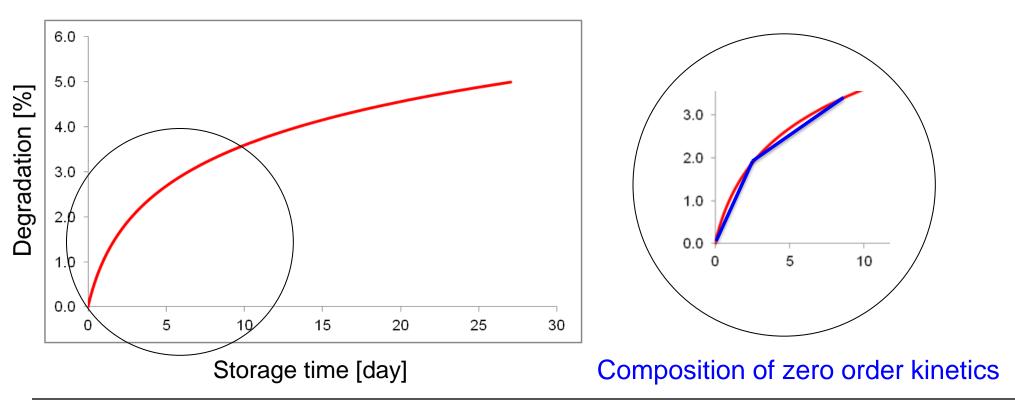
- Compatibility study: Selection of excipients
- Accelerated stability studies: Estimation of shelf live and packaging
- Evaluation of accelerated stability studies
 - Quantification of degradation kinetic
 - Modified Arrhenius equation
 Ink = InA-Ea/(RT)+B(RH)

Evaluation of Accelerated Stability Data

• Complex reactivity in solid state due to different microenvironments

Evaluation of Accelerated Stability Data

• Approximation: Superposition of zero order kinetics:


$$[x_t] = \sum k_i \cdot x_i \cdot t$$

With x_imole fraction of api state *i* (1 if $c_i > 0$, 0 else) c_tconcentration k_ireaction constant

Evaluation of Accelerated Stability Data

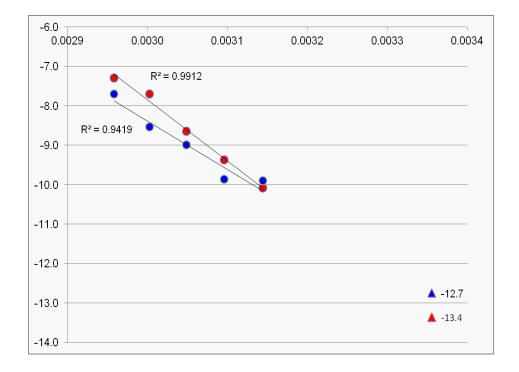
• Complex reactivity in solid state due to different microenvironments

Example: Accelerated stability

Temperature	Storage Time													
[°C]	0	2	4	6	8	10	12	16	21	28	32	45	62	92
40°C	Х										Х	Х	Х	Х
45℃	Х						Х	Х	Х	Х	Х	Х	Х	
50°C	Х				Х	Х	Х	Х	Х	Х	Х	Х		
55°C	Х			Х	Х	Х	Х	Х	Х					
60°C	Х		Х	Х	Х	Х	Х							
65°C	Х	Х	Х	Х	Х									

691 HMA 018_20000126T131521 597-HMA-018_20000126T132021 146_591-HM4-018_20000126T13252 **Rapid Product Development**

(thú thí


Example: Accelerated stability

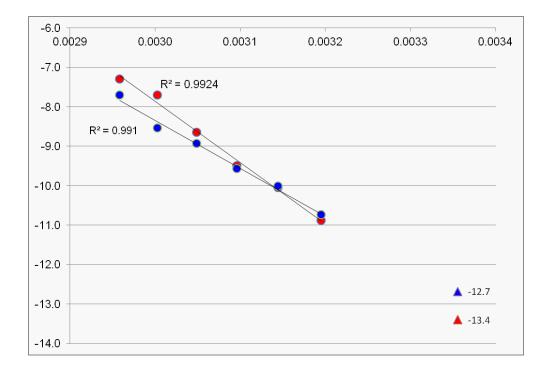
Temperature						Sto	orage T	ime [d	ay]					
[°C]	0	2	4	6	8	10	12	16	21	28	32	45	62	92
40°C	0.00%										Х	Х	Х	Х
45°C	0.00%						0.05%	Х	Х	Х	Х	Х	Х	
50°C	0.00%				0.07%	0.09%	0.10%	Х	Х	Х	Х	Х		
55°C	0.00%			0.12%	0.16%	0.18%	0.21%	Х	Х					
60°C	0.00%		0.18%	0.27%	0.39%	0.47%	0.55%							
65°C	0.00%	0.12%	0.27%	0.37%	0.45%									
Temperature							Storag	e Time						
[°C]	0	2	4	6	8	10	12	16	21	28	32	45	62	92
40°C	0.00%										Х	Х	Х	Х
45°C	0.00%						0.06%	Х	Х	Х	Х	Х	Х	
50°C	0.00%				0.05%	0.07%	0.09%	Х	Х	Х	Х	Х		
55°C	0.00%			0.06%	0.09%	0.12%	0.15%	Х	Х					
60°C	0.00%		0.07%	0.12%	0.18%	0.22%	0.27%							
65°C	0.00%	0.10%	0.18%	0.25%	0.30%									

HMA-018,2000012511 551-FMA-018, 20000126113052 591-HMA-019-20000126T131021

Example: Accelerated stability

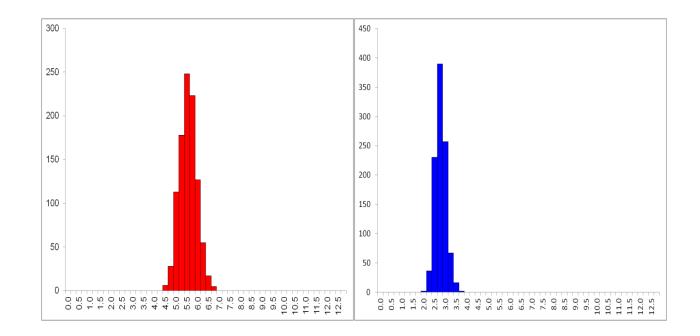
597-HMA-018_20000126T132021 146_591-HM4-018_20000126T13252 **Rapid Product Development**

(thú thí

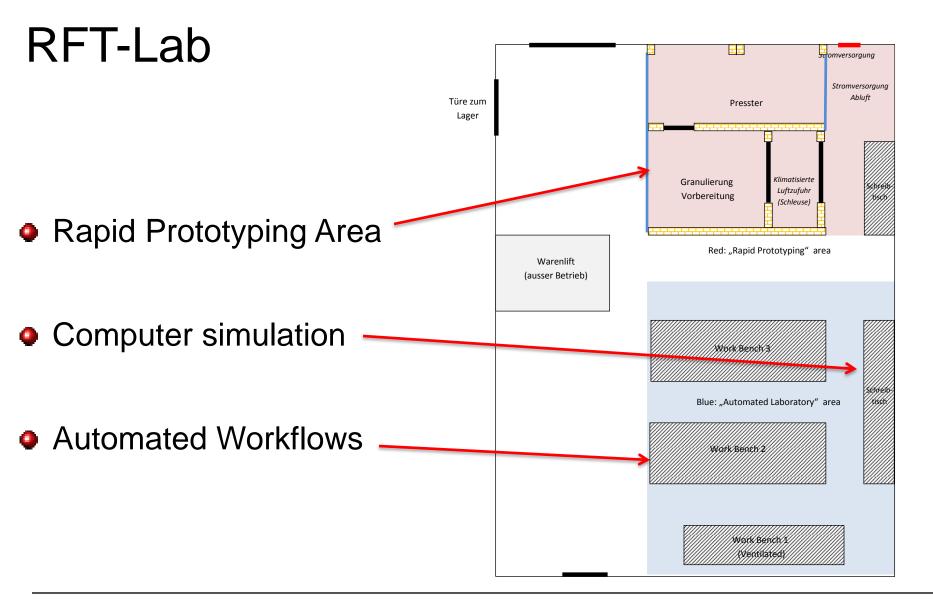

Example: Accelerated stability

Temperature						Sto	orage T	ſime [d	ay]					
[°C]	0	2	4	6	8	10	12	16	21	28	32	45	62	92
40°C	0.00%										0.06%	Х	Х	Х
45°C	0.00%						0.05%	0.07%	0.09%	0.12%	0.14%	Х	Х	
50°C	0.00%				0.07%	0.09%	0.10%	0.14%	0.17%	0.21%	0.25%	Х		
55°C	0.00%			0.12%	0.16%	0.18%	0.21%	0.29%	0.35%					
60°C	0.00%		0.18%	0.27%	0.39%	0.47%	0.55%							
65°C	0.00%	0.12%	0.27%	0.37%	0.45%									
Temperature							Storag	e Time						
[°C]	0	2	4	6	8	10	12	16	21	28	32	45	62	92
40°C	0.00%										0.07%	Х	Х	Х
45°C	0.00%						0.06%	0.08%	0.10%	0.12%	0.15%	Х	Х	
50°C	0.00%				0.05%	0.07%	0.09%	0.11%	0.15%	0.18%	0.21%	Х		
55°C	0.00%			0.06%	0.09%	0.12%	0.15%	0.21%	0.29%					
60°C	0.00%		0.07%	0.12%	0.18%	0.22%	0.27%							
65°C	0.00%	0.10%	0.18%	0.25%	0.30%									

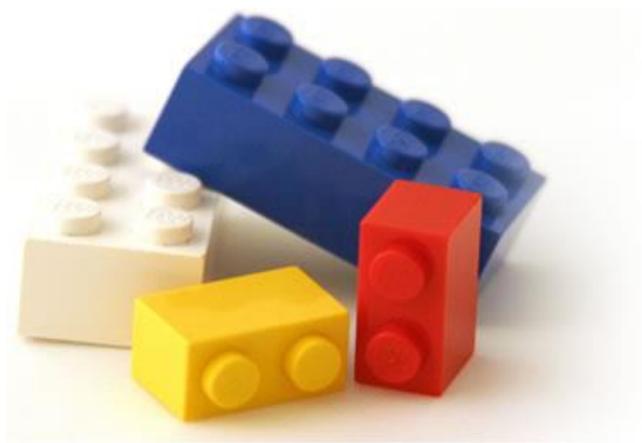
HMA-018,2000012511 551-FMA-018, 20000126113052 591-HMA-019-20000126T131021 691 HMA 018_20000126T131521



Example: Accelerated stability



Example: Accelerated stability



RFT-Lab

Solutions taylored to your need