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Abstract

The purpose of this study is to establish a theoretical basis for the tensile strength of low density tablets. In a first
step, a lattice model based on percolation theory is presented. As a theoretical result, a power law is obtained for the
lattice strength. The exponent in this law is expected to be universal and as a numerical value Tf$2.7 is proposed.
The result is identical with an earlier theoretical finding from an alternative approach proposed by Guyon et al.
(1987). In a second step, the new model equation is applied to the tensile strength of low density tablets. The
compacts were manufactured and tested with an universal testing instrument Zwick® UPM 1478 (Zwick–Roell).
Different types of microcrystalline cellulose Emcocel® 50M, Emcocel® 90M, Avicel® PH101 and Avicel® PH102 were
assayed as model excipients because of their ability to form tablets at comparatively low relative densities (rr). For
determination of the tensile strength, two different strain rates 0.5 and 25 mm min−1 were examined. All
experimentally determined exponents were in the same range with an average of T( f=3.290.1 and the critical solid
fractions (rrc), yielded values close the relative bulk densities. In a third step, the new model is compared to the
Ryshkewitch–Duckworth equation. This exponential relationship of the tensile strength and porosity was found to
have an inferior fitting adequacy than the new power law. As a conclusion, the lattice model presented is able to
explain the power law behaviour of the tensile strength as a function of the relative density with an exponent close
to three. The expected universal character of this exponent was supported by the results of the assayed substances at
two different strain rates. Plus, in the case of the tested substances, the new relationship between the tensile strength
and the relative density should be preferred to the often used exponential function. However, further studies have to
be conducted to know more about the validity of the new model. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Mechanical strength in a disordered medium

Tablet strength is an important property for safe
transportation and handling by patients as well as
for finishing the compacts in a coating machine.
Mechanical strength is also measured for quality
assurance during pharmaceutical production. In
addition, this property helps in elucidating the
physics of compression.

Many test methods for mechanical strength have
been established, ranging from direct tensile testing
over flexural tests to the most widespread diametral
compression tests (radial tensile strength measure-
ments).

There exist attempts to describe tensile strength
as a function of the relative density (Ryshkewitch,
1953; Leuenberger, 1980; Hiestand and Smith,
1984). Such approaches are empirical or contain at
least some heuristic elements, as it is difficult to
develop a straightforward theoretical description.
The simplest theoretical procedure is to assume
equal volume elements within a compact. This view
of tablets as a homogenous medium can be very
successful (Leuenberger, 1980), especially in the
case of dense compacts close to a solid continuum.
However, powders or granules compressed at low
pressures will form particle assemblies rather than
a solid continuum, especially particles, being poly-
disperse and showing some asperity form heteroge-
neous compacts at low pressures. The consequence
is a disordered structure. This disorder can be
present as a disorder of particles or as a disorder
of contact points. In the latter case, the disorder can
also be understood in terms of the absent bonding
points which is highly of interest regarding the fact
that the flaws in a material lead to crack propaga-
tion. If the disorder takes place on comparatively
large length scales, a theoretical problem is raised
by the fact that the tablet can not be divided into
mechanically equal volume elements, i.e. ho-
mogenisation is invalidated. For this type of phys-
ical problem, usually concepts of fractal geometry
are used. Especially the theory of percolation
(Flory, 1941; Stockmayer, 1943; Broadbent and
Hammersley, 1957; Stauffer and Aharony, 1992)
can be successfully applied to disordered media.

1.2. Percolation theory and critical mechanical
beha6iour

In the field of pharmaceutical powder technol-
ogy, percolation theory was introduced by Leuen-
berger et al. (1987). Emphasising mechanical
properties of tablets, it was important to discover
that the model Leuenberger and Leu (1992) is
consistent with an effecti6e medium approximation
(EMA) (Kuentz and Leuenberger, 1998). The latter
concept is a linear approximation of the measured
property far away from the percolation threshold.
The challenge was therefore given to elucidate the
mechanics of tablets also at comparatively low
relative densities. Thus, the modified Young’s mod-
ulus of microcrystalline cellulose tablets was
analysed in vicinity of the percolation threshold
and a non-linear behaviour with an exponent close
to four was observed (Kuentz and Leuenberger,
1998). This exponent was explained on behalf of a
mechanical percolation model. In this version of
the percolation process, springs are imagined to be
placed on a lattice with a given occupation proba-
bility p. Above a critical concentration pc two
arbitrary sides of a system are connected by a
coherent cluster of springs. Thus, any mechanical
property (X) becomes non-zero above this
threshold (pc). In vicinity of pc, a power law
exhibiting a critical exponent q can be proposed
(Stauffer and Aharony, 1992):

X8 (p−pc)q (1)

The mechanical percolation problem can also be
formulated, starting from a description above the
percolation threshold. Hence, an elastic network
can alternatively undergo a dilution process where
springs are removed with a probability r=1−p.
The critical value rc names again the threshold
concentration where a given mechanical property
(X) vanishes. This is the original formulation of the
central-force percolation (Feng and Sen, 1984). It is
interesting to know that the threshold in a central-
force problem appears to be higher than expected
for ordinary percolation. Fig. 1 shows a small part
of a triangular lattice where the sites are occupied
with springs. It has to be kept in mind that the
rigidity of the system is given by the springs in the
occupied sites. It is now imagined that for every
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individual site we have a certain probability p that
the site is occupied with a spring or that it is
removed by the probability r. After removal of
the springs, a new structure is given by the occu-
pied sites that is statistically determined by the
probability p=1−r. As long as the probability r
is smaller than the critical value rc, the entire
lattice exhibits a rigidity.

It should be added that Eq. (1) is only valuable
as long as disorder is predominant. In this range,
the exponent is expected to be universal. This
assumption is based on the theoretical fact that
critical exponents are as a rule independent of the
lattice type used (Stauffer and Aharony, 1992).
Thus, a macroscopic critical behaviour is not af-
fected by the local details of a system.

Coming to the experimental situation of porous
bodies like tablets, the relative density holds for a
corresponding parameter to the occupation prob-
ability p of percolation theory (Ehrburger and
Lahaye, 1989; Leuenberger and Leu, 1992). Only
low density tablets of different types of microcrys-
talline cellulose (MCC) were used in the present
study. The excellent compaction properties of
MCC permit to manufacture tablets at very low
relative densities. This can be of importance, con-
sidering the lack of knowledge on how broad the
range is where the fundamental power law of
percolation theory Eq. (1) can be applied accu-
rately.

It should be mentioned as well that the tensile
strength is a very suitable property to study per-

colation effects, because mechanical breakage is
known to be extremely sensitive to local disorder
(Duxbury, 1990).

1.3. Fracture in central-force networks

The fracture problem has already been theoreti-
cally studied in elastic networks. The dilution
process in central-force percolation, i.e. the re-
moving of springs, leads to a mechanical break-
down at the threshold pc=1−rc. The simplest
models consider only stretching forces along the
springs. This leads to a similar problem as in the
well known analogous electrical case where the
breakdown of fuses is emphasised (Kahng et al.,
1988). However, for a realistic mechanical model,
the existence of torques needs to be taken into
account. Such bond bending forces lead to a new
class of exponent universality, violating the anal-
ogy to the electrical problem (Kantor and Web-
man, 1984).

As a conclusion, the breakdown behaviour of a
central-force network allowing bending forces is
of special interest. The tensile strength of such a
network (slattice) can be expected to scale close to
pc with a fracture exponent Tf:

slattice8 (p−pc)
Tf (2)

Guyon et al. (1987) proposed an analytic expres-
sion for Tf as given below:

Tf=n · d (3)

where n is the critical exponent of a characteristic
length j (correlation length) and d is the space
dimension (Euclidean dimension). The arguments
leading to this result started from a balance of
forces and torques whereas this study follows an
alternative approach.

2. Theoretical development

2.1. The mechanical strength of a theoretical
lattice

The critical strength (sk) of a crystal lattice can
be calculated if the elastically stored energy per

Fig. 1. A small part of a triangular lattice is shown where all
sites are occupied by springs. In a classical central-force
model, individual springs will be removed with a given proba-
bility r. If this probability is large enough, i.e. r equals or
exceed rc, the lattice looses the macroscopic rigidity (Roux et
al., 1993).
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volume element is balanced with the energy of
creating a new breakage surface dS (Gregg, 1965):

Gs · dS$
1
2

sk
2

E
· c · dS (4)

where Gs is the surface energy, E is the elastic
modulus and c stands for the atomic distance in
the crystal lattice. Accordingly, one finds for sk at
constant stress:

sk$
'2E · Gs

c
(5)

In a real material, the strength will be much
smaller than predicted by the above equation, as
stress concentrations are produced by flaws or
voids (Griffith, 1921). Thus, the meaning of E, Gs

or c depends on the properties of the system, i.e.
the vacancies of the crystal lattice. To model such
effects, Eq. (5) can be adapted to a theoretical
lattice model of percolation theory:

slattice(p)8
'E(p)·Gs(p)

c(p)
(6)

The elasticity, the surface energy as well as the
characteristic length c(p) in the lattice are here
functions of the occupation probability p. This
probability denotes the chance to introduce a
mechanical element to an arbitrary lattice site.
Such elements are imagined to produce brittle
fracture if their elastic limit is exceeded. In addi-
tion, occurrence of torques shall be allowed in this
virtual lattice. To achieve a final expression for
the lattice strength, the functions of the parame-
ters E(p), Gs(p) and c(p) need to be evaluated,
raising three individual theoretical problems:

Emphasising first the elastic problem, Kantor
and Webman (1984) provided a solution for the
elasticity of a bond bending network:

E(p)8 (p−pc)t with t=n · d+1 (7)

where t is the exponent of elasticity, n is the
critical exponent of a characteristic length j (cor-
relation length), and d is the space dimension
(Euclidean dimension). This result is based on the
assumption that not all mechanical elements
within the lattice contribute to overall elasticity.
Only elements, building the backbone of the per-
colating cluster can take part of the stress trans-

Fig. 2. A view from far on a detail of the backbone of the
percolating structure is illustrated (node-link and blob picture).
The correlation length j provides a length scale in this hierar-
chical lattice (Hansen, 1990).

mission. This backbone can be divided into
further substructures. Dense regions of multiple
connecting elements (blobs) can be distinguished
from connections, established only by single ele-
ments (single connecting elements). This hierarchi-
cal view of the backbone is well known as the
node-link and blob model (Fig. 2). In the Cantor
and Webman result, only the single elements were
imagined to respond to an applied force. Blobs
were treated as entirely rigid and were conse-
quently neglected. Yet, it can be argued that this
simplified view on elasticity can only give a lower
border for the exponent t (Bunde and Havlin,
1996). In the context of the fracture problem
however, focusing on single connecting elements
seems justified as they hold for the weakest links
in the entire lattice.

Coming to the second part of the theoretical
problem, we propose the following function for
Gs(p):

Gs(p)k · Ns · P(p)8P(p) (8)

where k is a proportionality constant, Ns a
constant number of sites belonging to a unit cross
sectional area in the lattice, and P(p) is the prob-
ability that an arbitrary site contains a rele6ant
element. Again the term rele6ant stresses the fact
that not all elements contribute to a macroscopic
property like Gs(p). Close to the percolation
threshold, a power law can be proposed for the
surface energy with a critical exponent 8 as given
below:
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Gs(p)8P(p)8 (p−pc)8 (9)

In vicinity of the percolation threshold (p\pc),
the percolating cluster has a fractal dimension
Df$2.5 for d=3 (Stauffer and Aharony, 1992).
If only the backbone of this structure is taken into
account, a fractal dimension of DBB$1.7 (d=3)
(Stauffer and Aharony, 1992) results. This back-
bone is the force transmitting part of the percolat-
ing structure. It should be kept in mind that
mechanical strength is determined by the weakest
link in the structure that are given by the single
connecting elements. The sum of these single con-
necting links, i.e. rele6ant mechanical elements
within an arbitrary radius R is proportional to
RDsc with Dsc$1.1 (d=3) (Stauffer and Aharony,
1992). To obtain the probability P(p), i.e. the
probability that an arbitrary site contains a rele-
6ant element, a normalisation by R2 (d=3) is
needed, or more general in d dimensions P(p)
reads:

P(p)8
RDSC

Rd−1 (10)

The fractal aspect is not present on all length
scales. There exists a characteristic length j (cor-
relation length) below which the fractal structure
of a system becomes visible. The radius R is as a
measure of length proportional to j. Therefore
expression (10) becomes:

P(p)8
j

DSC

jd−18j
DSC− (d−1) (11)

In percolation theory, the following power law
(12) is well known:

j8 (p−pc)−n (12)

Using this proportionality in combination with
expression (11) one finds:

P(p)8 (p−p)−yDSC+y(d−1) (13)

The exponent 8 in expression (9) is therefore
given by:

8= −nDSC+n(d−1) (14)

According to Coniglio (1982), the fractal dimen-
sion Dsc can be expressed by

DSC=
1
n

(15)

Therefore, the exponent 8 reads:

8=n(d−1)−1 (16)

The third problem that was initially formulated, is
given by the characteristic length c(p) in the lat-
tice. So far, a hierarchical view of the lattice
(node-link and blob picture) (Fig. 2) was used to
find expressions for E(p) and Gs(p). If again only
the single connecting elements are considered, the
average spacing between these weakest links in the
lattice corresponds to j. For the length c(p) with
its exponent a, the expression below is proposed:

c(p)8j8 (p−pc)a with a= −n (17)

Thus, from the formulae (2), (6), (7), (9), (17) the
fracture strength of the lattice can be calculated:

slattice8 (p−pc)
Tf, slattice8

'(p−pc)t · (p−pc)8

(p−pc)a

(18)

Tf=
1
2

· [t+8−a ] (19)

In the case that only single connecting elements
are rele6ant for breakage, formulae (7), (16), (17)
and (19) can be combined to:

Tf=
1
2

[nd+1+n(d−1)−1+n ]=n ·d (20)

The result obtained just agrees with Eq. (3) and
can be linked to the elastic exponent t of the
Kantor and Webman Eq. (7):

Tf=t−1 (21)

The numerical value for Tf can be approxi-
mated in three dimensions (d=3) using Eq. (20)
with n$0.9 (Stauffer and Aharony, 1992) result-
ing in Tf$2.7. This value is in excellent agree-
ment with computer simulations of critical
fracture behaviour on a cubic lattice, obtained
from Sahimi and Ararabi (1992).

2.2. Tensile strength of tablets

As mentioned in the introduction, the percola-
tion probability has a corresponding parameter in
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tableting technology that is given by the relative
density. Thus, rr is expected to exhibit the same
critical exponent Tf as theoretically predicted for
p. There exist also the analogous proportionality
between the probability r and the porosity o

(bearing in mind that r=1−p and o=1−rr).
Taking into account expression (20), the propor-
tionality (22) is conjectured:

st8 (oc−o)Tf8 (rr−rrc)
Tf (22)

The value Tf=3n$2.7 is expected to hold close
to the threshold density.

3. Materials and methods

Tablets (round, flat, 11 mm diameter, 40091
mg weight) for the subsequent determination of
the tensile strength using the Zwick® 1478 Univer-
sal Testing Instrument (Zwick® GmbH, Ulm,
Germany) were prepared. As starting material
four types of microcrystalline cellulose were used:
Emcocel® 50M (Mendell), batch No.1333, Emco-
cel® 90M (Mendell) batch No.6011, Avicel®

PH101(FMC) batch No.6918 and Avicel® PH102
(FMC) batch No.7539 (Table 1).

The true density was determined with a Beck-
man Air Comparison Pycnometer® Model 930
and the particle size assayed with a Malvern®

Mastersizer X.
For each powder system, five tablets were com-

pressed at different pressure levels ranging from
1.05 up to 105.23 MPa at a relative humidity of
45910%. The compression speed was 10 mm
min−1 and the die wall was lubricated with mag-
nesium stearate before every cycle. Forthy-eight
hours after manufacture, the radial tensile

strength of the compacts was tested. The preforce
was 0.3 N and the testing speed 0.5 and 25 mm
min−1, respectively. The radial tensile strength
was calculated according to Newton et al. (1971):

st=
2F

p · D · h
(23)

where F is the maximal force recorded, D the
tablet diameter and h its thickness. Only com-
pacts, showing an ideal fracture were taken into
account for the subsequent statistical evaluation.

For presentation of data, the radial tensile
strength was normalised by the maximal values
(stmax) obtained from linear extrapolation (EMA)
of the relative density rr�1, using only data from
the highest four pressure levels.

Tablets compressed at 78.920 and 105.226 MPa
were used for determination of stmax but omitted
for evaluation of the new model.

In order to take care of the existing flip-flop
effect in the simultaneously determination of the
critical exponent and percolation threshold, and
to examine the range of validity of the power law,
the exponents were determined in the logarithmic
space according to Eq. (24). In a second step the
exponents were averaged and a non-linear regres-
sion of Eq. (25) conducted. This method is de-
scribed in detail by Kuentz and Leuenberger,
(1998).

ln
� st

stmax

�
= ln(S)+Tf · ln(rr−rrc) (24)

st

stmax

=S · (rr−rrc)
T( f (25)

All statistical evaluations were conducted with
the program: SYSTAT® for Windows Version 7.0
(SPSS, Evanston, IL).

Table 1
Physical characterisation of the different types of microcrystalline cellulose

Avicel® PH101Emcocel® 50M Emcocel® 90M Avicel® PH102

1.561.57 1.57True density (g cm−3) 1.56
0.236Relative bulk density 0.207 0.2130.205

0.250 0.271Relative tapped density 0.260 0.258
48.183.5 81.254.0Mean particle size (Sauter) (mm)
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Table 2
Linear extrapolated values stmax from highest compression pressures (EMA) and critical fracture exponents Tf determined according
to Eq. (24)

Testing speed (0.5 mm min−1)Testing speed (25 mm min−1)

Tfstmax(MPa) stmax(MPa)Tf

3.1790.15 11.7690.71Emcocel® 50M 3.1490.2412.3890.17
3.3090.16 10.4290.86Emcocel® 90M 11.1290.91 3.2590.16

10.4890.623.2790.16 3.3090.1412.2791.03Avicel® PH101
3.1490.22 10.3990.59Avicel® PH102 12.3191.14 3.1590.16

4. Results and discussion

4.1. The new model for the tensile strength of
tablets and its limitations

Statistical analysis according to Eq. (24) yielded
r2(corrected) values of 0.999 and even higher,
indicating the adequacy of the proposed model
equation. (Table 2). Comparing the results for the
two different strain rates, the fracture exponents
were very similar. Thus, critical fracture be-
haviour seemed not to be affected by testing
speed. However, the absolute values of the tablet
strength were sensitive to strain rate. (Fig. 3). This
trend was also supported by the small differences
of the extrapolated maximal values between the
two groups tested (Table 2). The curvature of st

as a function of rr produced exponents ranging
from 3.1 to 3.3. This result is little higher than the
theoretically predicted value of 2.7.

So far the question can be asked, to what extent
theoretical predictions can match experimental re-
sults? How similar is the structure of the bonding
links within the tablet, as compared to the corre-
sponding percolation structure in theory? It may
also be questioned, if it is correct to focus on
bonding elements, since the absent contacts ap-
pear to be more important, regarding the fact that
crack propagation is a result of stress concentra-
tions originated by the voids. The latter question
can be answered directly. Introducing mechanical
elements in a lattice and removing such elements
from the lattice are inverse formulations of a
percolation process having the same critical frac-
ture exponent. In tablets, the porosity and relative
density must exhibit the same critical behaviour,

as the two parameters are linearly related (propor-
tionality (22)).

The first question is more difficult to answer.
The structure in tablets that is rele6ant for me-
chanical strength can unfortunately not be studied
directly. Therefore one has to resort to a theoreti-
cal argumentation. A percolation structure should
in general provide a good model for a heteroge-
neous physical structure unless no long range cor-
relations occur. That is, the distribution of
contacts and voids in the tablet should practically
be random. A general application of percolation
concepts to particle packing is therefore still a
debated subject (Guyon et al., 1990). Yet, accept-
ing a percolation like structure in tablets, it is
especially of interest to ask for the physical mean-

Fig. 3. Tensile strength (st) (MPa) of Avicel® PH101 along the
compaction pressure (MPa) for two different testing speeds. D:
25 mm min−1, × : 0.5 mm min−1



M. Kuentz et al. / International Journal of Pharmaceutics 182 (1999) 243–255250

ing of the single connecting elements. In the lattice
model, these weakest elements are assumed to
dominate mechanical behaviour. Thinking of
tablets, the spots where stress concentrations oc-
cur are in the first place rele6ant for breakage and
therefore the fractal dimension Dsc becomes im-
portant. In a first approximation one can assume
that the trace of the crack that occurs during
testing exhibits a fractal dimension that equals
roughly Dsc. An experimental analysis of cracks
from different metals was performed by Mandel-
brot et al. (1984). Their results showed that cracks
indeed can exhibit a fractal dimension. This is in
agreement with our theoretical expectations but
for quantitative statements, studies of crack pat-
terns from tablets are certainly needed.

Two further aspects have to be mentioned if
percolation theory is applied. First, the tablet has
a limited specimen size as opposed to the theoret-
ical lattices being infinite in extension. Small cor-
rections of an assessed exponent can therefore
account for such finite size effects (Stauffer and
Aharony, 1992). Second, the range of validity of a
percolation power law is a priori restricted. In a
broad range of the order parameter, a power
series would most accurately describe an arbitrary
macroscopic property. The fundamental power
law (1) names therefore only the most important
term in this series and provides only in vicinity of
the threshold an exact result. In a broader range
however, the unknown terms of the series can
gain increasingly weight and can possibly influ-
ence best fitted parameters in the model.

Besides these general limitations of a percola-
tion approach there are additional issues to be
discussed for the special case in this study. The
lattice model proposed for simplicity completely
brittle elements. This is surely justified thinking of
the fact that tablets are composites of particles
and therefore essentially brittle if subjected to
diametral compression. Still, on the microscopic
scale dissipative processes can also take place. The
term of the surface energy should better be re-
placed by a fracture surface energy, also involving
energy dissipation (Stokes and Evans, 1997). Note
further that the applied load may not be entirely
converted to tension. Compressive stresses or
shear stresses can additionally occur in the speci-

men. Such effects possibly influence the deter-
mined exponent. If they dominate Eq. (23) is even
invalidated.

So far, a number of reasons were given to
explain the difference between observed exponents
and the theoretical prediction. In this list, the
aspect of anisotropy within the compacts should
not be left out. The derivation of Eq. (5) assumes
a constant stress, but in case of a constant strain
an additional factor of the Poisson ratio would
have to be introduced. If this factor is a constant
with respect to rr, the proportionality (6) is still
correct. The aspect of changing anisotropy was
not included in the present isotropic lattice model
and may be part of further theoretical
developments.

As mentioned in the introduction, a critical
exponent shows in general universality. Despite
this fundamental principle of percolation theory,
differences between experimental and theoretically
predicted values for a critical exponent can occur
due to the already mentioned effects. Also on a
theoretical level there is a possible source of non-
universality, originated by a broad distribution of
the microscopic property (Kogut and Straley,
1979). However, the practical relevance of this
theoretical argument is still unclear. The existence
of a narrow strength distribution however, will
not violate the concept of universality. Accord-
ingly, the universality of the critical fracture expo-
nent was postulated. The averaging over all
experimentally determined values yields T( f=
3.290.1. In the subsequently performed non-lin-
ear regressions of Eq. (25), the best r2 values were
found in the range between 0.999 and 1.000
(Table 3 Figs. 4 and 5).

4.2. Discussion of the parameters

Considering the thresholds rrc (Table 3), it is
apparent that the values were close to the interval
of the relative bulk density and tapped density for
individual substances. It is interesting to notice
that in a preceding study of elasticity (Kuentz and
Leuenberger, 1998), the thresholds rrc were
smaller. This led to the assumption that the rela-
tive density can be regarded as a critical volume
fraction in a continuum percolation (Stauffer and
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Table 3
Comparison of the new model with the former Ryshkewitch–Duckworth approach

Power law according to Eq. (25) with Tf=3.290.1 Exponential law according to Eq. (27)
Testing speed (25 mm min−1) Testing speed (0.5 mm min−1) Testing speed (25 mm min−1) Testing speed (0.5 mm min−1)

S rrc r2 S rrc r2 s0 (MPa) b r2 s0 (MPa) b r2

2.28 0.204 1.000 2.30 0.193 1.000Emcocel® 50M 20.77 6.69 0.997 21.35 6.66 0.996
2.93 0.247 0.999 2.38 0.214 1.000Emcocel® 90 M 18.03 6.70 0.996 16.96 6.66 0.997
2.62 0.213 1.000 2.76 0.217 0.999 23.03Avicel® PH101 6.80 0.996 19.33 6.64 0.994
2.50 0.211 0.999 2.52 0.211 0.999 22.74Avicel® PH102 6.84 0.997 17.84 6.58 0.996
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Fig. 4. Normalised tensile strength (st/stmax) (25mm min−1

testing speed) of A-Emcocel® 50M and B-Emcocel® 90M. D:
experimental data, the line shows calculated values according
to Eq. (25) and the dashed line holds for the linear approxima-
tion (EMA) far away from the threshold rrc.

particles need to share a certain minimal surface
bonding area to form a rele6ant bonding strength.
Thus, a minimum local force is required for parti-
cle adhering and therefore the threshold can not
be below the relative bulk density.

It is important to know that the scaling factor S
can not be calculated theoretically, except for very
defined cases. Yet, it can be stated that S will
strongly depend on individual system characteris-
tics and on the fact whether the given property,
such as st is normalised by its maximal value

Fig. 5. Normalised tensile strength (st/stmax) (25mm min−1

testing speed) of A-Avicel® PH101 and B-Avicel® PH102. D:
experimental data, the line shows calculated values according
to Eq. (25) and the dashed line holds for the linear approxima-
tion (EMA) far away from the threshold rrc.

Aharony, 1992) model. This view provided an
explanation for a threshold value, being lower
than the relative bulk density. Yet, the present
study shows that to ensure mechanical strength,
higher values of rrc are needed than in case of
elasticity. Thus, the threshold where a mechanical
property becomes zero can experimentally vary
for different properties studied. The elastic mod-
ulus for example refers to the rigidity of a tablet.
In case of the tablets strength however, the con-
tacts for rigidity might not be enough. Adjacent
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stmax. In the case of the normalised st/stmax-val-
ues, S is related to the specific microstructure of
the compacts. Factors of the shape or size of the
pores may be included in this constant. To know
more about the physical meaning of this constant,
further experimental studies will have to be
conducted.

4.3. Comparison of the new model equation with
an exponential relationship of the tensile strength
and porosity

In the field of pharmaceutics or material sci-
ences an exponential function is commonly pro-
posed for the tensile strength of tablets in relation
to their porosity. This goes back to a study of
Ryshkewitch (1953) for ceramic materials which
was later discussed by Duckworth (1953):

st=s0 · e−b · o (26)

The parameter s0 holds for the zero porosity
strength, b is a material depending constant and o

denotes the porosity. The latter parameter can be
replaced by the relative density resulting to Eq.
(27):

st=s0 · eb · (rr−1) (27)

Applying this exponential function to the tensile
strength measured, adequate models result (Table
3). An analysis of the residuals (Fig. 6) indicates
the superiority of the new model. Yet, it has to be
kept in mind that the present study is restricted to
low density tablets of polymers.

The fitting of Eq. (27) also reveals another
interesting fact. The s0 values (Table 3) were
clearly higher than the extrapolated parameter
stmax (Table 2). Note that in this study the tensile
strength at zero porosity was linearly extrapo-
lated, using only the highest density values. This is
theoretically based on the effecti6e medium ap-
proximation (Kuentz and Leuenberger, 1998). The
alternative method of an exponential extrapola-
tion has the drawback of a lacking theoretical
background. So far, it should be added that the
maximal strength was understood as a maximal
value attached to a material for given experimen-
tal conditions and it was in the first place used to
normalise st. This seems meaningful since abso-

Fig. 6. Residuals of the model: (A) Eq. (25) and (B) Eq. (27)
using data of Avicel® PH101 (25mm min−1 testing speed).
The abscissa displays the predicted values of (A) the nor-
malised tensile strength (st/stmax) and (B) the tensile strength
divided by the estimate of the zero porosity strength (st/s0).

lute strength values appear to be determined by
individual factors of the tableting material as well
as by process parameters. In addition only the use
of relative strength values enable the scaling fac-
tor to be obtained. Note, that the constant S is
only affected by the estimated value stmax. The
threshold rrc that marks the onset of strength,
and the exponent Tf, describing the power of the
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tensile strength curve, should both not be influ-
enced by the normalisation.

5. Conclusions

The disordered (micro)structure of tablets at
comparatively low densities seems to be a key
factor in understanding their mechanical be-
haviour. With concepts of percolation theory an
explanation can be given for the non-linear be-
haviour of the tensile strength in relation to the
relative density. A power law holds in the proxim-
ity of a critical relative density with a fracture
exponent close to three. The experimentally deter-
mined exponent was slightly higher than its theo-
retical prediction and further research work is
necessary to show whether this difference is sig-
nificant. A comparison of the new model with the
often used Ryshkewitch–Duckworth equation
showed a better fitting capacity in favour of the
power law presented. Additional studies are of
interest to apply the new model to other sub-
stances than microcrystalline cellulose.
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Appendix A. List of symbols

b dimensionless fitting constant in the
exponent of the Ryshkewitch–Duck-
worth equation
atomic spacing in a crystal latticec, c(p)
and the corresponding characteristic
length of the theoretical lattice as a
function of the occupation probabil-
ity p

d dimension of space (Euclidean
dimension)
tablet diameterD

DBB fractal dimension of the backbone
of the percolating cluster

fractal dimension of the percolatingDf

cluster
fractal dimension of the single con-Dsc

necting elements in the percolating
cluster
elastic Young’s modulus of a crystalE, E(p)
lattice and the corresponding
Young’s modulus of the lattice
model as a function of the occupa-
tion probability p
maximal force recorded in the di-F
ametral compression test
thickness of the tableth

k constant in the dimension of a sur-
face energy
number of sites in a unit cross sec-Ns

tional area of the theoretical lattice
p, pc occupation probability of a site in

the lattice and its critical value (per-
colation threshold)
universal exponent in the funda-q
mental power law of percolation
theory
probability to remove a mechanicalr, rc

element from a lattice site and its
critical threshold value (percolation
threshold)
arbitrary radius that is spanned in aR
unit cross sectional area of the the-
oretical lattice
dimensionless proportionality con-S
stant (scaling factor) in the power
law of the normalised tensile
strength
fracture exponent in theory and theTf, T( f

experimental average value
X arbitrary mechanical property of a

disordered medium
critical exponent of the characteris-a

tic length c(p)
Gs, Gs(p) surface energy of a crystal lattice

and the corresponding property of
the lattice model as a function of
the occupation probability p

dS breakage surface in a crystal lattice
porosity and the critical thresholdo, oc

value
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n critical exponent of the correlation
length

probability that an arbitrary site inP(p)
unit cross sectional area contains
a rele6ant mechanical element

rr, rrc relative density of a tablet and its
critical threshold value

fitting constant of the Ryshkewitch–s0

Duckworth equation which holds
for the zero porosity strength

critical strength in a crystal latticesk

tensile strength of the theoreticalslattice(p)
lattice as a function of the occu-
pation probability

tensile strength of a tablet and thest, stmax

extrapolated maximal value
t critical exponent of the elastic

Young’s modulus
8 critical exponent of the surface

energy
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